October 15, 2024

Software Security 1&I1

Rasmus Dahlberg

rasmus.dahlberg@kau.se Software Security 1&I1 1/40

Already covered here or elsewhere: least privilege, modern crypto, use secure APls,
pass strings to complex subsystems with care, do unit testing, security audits, ...

Be aware of other common coding mistakes not covered here

Common Weakness Enumeration Yor "‘
~ A Community-Developed List of Software Weakness Types 25 s

Home > CWE List > CWE- Individual Dictionary Definition (3.1) ID Lookup: -

CWE VIEW: Development Concepts

View ID: 699 Status: Incomplete
Type: Graph

Downloads: Booklet | CSV | XML
¥ Obijective

This view organizes weaknesses around concepts that are frequently used or encountered in software development.
Accordingly, this view can align closely with the perspectives of developers, educators, and assessment vendors. It
provides a variety of categories that are intended to simplify navigation, browsing, and mapping.

https://cwe.mitre.org/data/definitions/699.html

rasmus.dahlberg@kau.se Software Security 1&I1 3/40

https://cwe.mitre.org/data/definitions/699.html

Software vulnerabilities pay

Upto
$1000000

Upto
$500.000

Upo
$250000

Upto
$200,000

Upto
$100000

Up to
20000

Upto
$50000

Upto
$10,000

ZERODIUM Payouts for Desktops/Servers’

mmm Windows | RCE: Remote Code Execution

- macoS

N

Edge
Roe+LPE ll RCE+LPE

e vm|

* All payouts are subject to change or cancallation without notica. All

https://zerodium.com/program.html

rasmus.dahlberg@kau.se Software Security 1&I1

Linux/BSD | SBX: Sandbox Escape or Bypass
Any 0S

Zerodium’s program

LPE: Local Privilege Escalation

VME: Virtual Machine Escape
Chrome
RCE+LPE

2004

Firefox
RCE+LPE

van|

S0

WinZip

the property of their 3 2019/01 @zerodium.com

4/40

https://zerodium.com/program.html

rasmus.dahlberg@kau.se

Software vulnerabilities pay

Reward amounts for security vulnerabilities

New! To read more about our approach to vulnerability rewards you can read our Bug Hunter University article here

Google’s program

Rewards for qualifying bugs range from $100 to $31,337. The following table outlines the usual rewards chosen for the most common classes of bugs

Category

Remote code execution

Unrestricted file system or
database access

Logic flaw bugs leaking or
bypassing significant
security controls

Execute code on the client

Other valid security
vulnerabilities

Examples Applications that Other highly Normal Non-integrated acquisitions and

permit taking over a Google other sandboxed or lower priority

Google account [1] icati ication: 1s [3]

[2]
Vulnerabilities giving direct access to Google servers
Command injection, $31,337 $31,337 $31,337 $1,337 - $5,000
deserialization bugs,
sandbox escapes
Unsandboxed XXE, SQL $13,337 $13,337 $13,337 $1,337 - $5,000
injection
Direct object reference, $13,337 $7,500 $5,000 $500
remote user
impersonation
Vulnerabilities giving access to client or authenticated session of the logged-in victim

Web: Cross-site $7,500 $5,000 $3,133.7 $100
scripting
Mobile / Hardware: Code
execution
Web: CSRF, Clickjacking $500 - $7,500 $500 - $5,000 $500 - $100
Mobile / Hardware: $3,133.7

Information leak,
privilege escalation

https://www.google.com/about/appsecurity/reward-program/index.html

Software Security 1&I1

5/40

https://www.google.com/about/appsecurity/reward-program/index.html

What is software security about? Weird machines!

Unintended
. functionality,
%i.e. the "weird

Normal, intended machine"

functionality

SN A

Expected, valid input Unexpected input

Security properties and threat model — program should work as intended

1
https://en.wikipedia.org/wiki/Weird_machine
rasmus.dahlberg@kau.se Software Security 1&I1 6/40

https://en.wikipedia.org/wiki/Weird_machine

Can you spell software vulnerability? BUG

rasmus.dahlberg@kau.se Software Security 1&I1 7/40

Bad composition Gmail password reset?

//' Gmail reset \\\ /// Amazon reset \\\\

‘ - use backup mail ‘ ‘ - name \‘

- m¥***xnGme . com - billing address /

\\ ///) - CC number ///
A A

precaution?

"~ ApplelD reset ¥ " Amazon add CC
‘/ - mail address ‘ - name
- billing address - mail address ,
\\\ - last four in CC /// \\\ - billing address ///

2 ..
Obfuscate CC, s.t., only last last 4 CC digits are shown
3
https://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/ Credit: Nickolai Zeldovich and James Mickens
rasmus.dahlberg@kau.se Software Security 1&I1

8/40

https://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/

Implementation error iCloud hack*

Other features

Sharing J
. . Find my
Files ——— iCloud T Phone
m User must login to use a feature Files, sharing, other features? Yep
= Rate limited login attempts? Find my iPhone...? Nop

Lesson learned: the importance of testing against abnormal behaviour

4
https://github.com/hackappcom/ibrute Credit: Nickolai Zeldovich and James Mickens
rasmus.dahlberg@kau.se Software Security 1&I1 9/40

https://github.com/hackappcom/ibrute

Implementation error Subject names and TLS®

DEAR CLIENT, I'M COINBASE.COM\OEVILCOM
®

m TLS certificate: identity-to-key binding
m Subject name? Pascal string
> Length followed by characters
m Many TLS implementations? C string
> Characters with null-termination

Lesson learned: only process data at uniform formats

5
https://www.blackhat.com/presentations/bh-usa-09/MARLINSPIKE/BHUSAO9-Marlinspike-DefeatSSL-PAPER1.pdf
rasmus .dahlberg@kau.se Software Security 1&I1 10/40

https://www.blackhat.com/presentations/bh-usa-09/MARLINSPIKE/BHUSA09-Marlinspike-DefeatSSL-PAPER1.pdf

The bad news :/

m Much software is written in C/C++

m Recipe for disaster:

» Exposure to raw memory addresses
» No built-in bound checking and safety
» Operate on untrusted user input

m Why?

rasmus.dahlberg@kau.se

Software Security 1&I1

SECOND EDITION

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

FRETICR MALL 50FTWAR SERES

11/40

It is easy to get wrong 1/2

1 char b[4] = "abc”; 1 char b[4] = "abc”; 1 char b[4];
2 b[3] = 'd’; 2 b[4] = 'd’; > fgets(b, 4, stdin);
3 printf("b: %s\n”, b); 3 printf("b: %s\n", s); 3 printf(b);
4 ... 4 ... 4 ...
Problem? Problem? Problem?
over-read over-write over-read

rasmus .dahlberg@kau.se Software Security 1&I1 12/40

It is easy to get wrong 2/2

1 void init(char v, char xbuf, int n) 1 void cat(char *dst, size_t n,
2 { 2 char xsrcl, size_t nl,
3 char xb = buf; 3 char *src2, size_t n2)
4 while (b < buf+n) { 4
5 xb++ = val; 5 if (n1+n2 <= n) {
6 } 6 strncpy (dst, srcl, n);
7} 7 strncat(dst, src2, n—nl);
8 ... 8}
9 char xbuf = malloc(2); 9 }
0 init('A’, buf, sizeof(buf)); 10
Problem? Problem?
over-write over-write

rasmus.dahlberg@kau.se Software Security 1&I1 13/40

A famous over-read in OpenSSL Heartbleed bqu

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY "POTATO" (6 LETTERS).

ﬁ)
]

ser Meg wants these 6 letters: POTATO.

ese 4 letters: BIRD.

Hom....

SERVER, ARE YOU STiLL. THERE?
ser Meg wants these 6 letters: POTATO. IFS0,REPLY "HAT" (500 LETTERS),

/

SERVER, ARE. YOU STILL THERE?.
IF 50, REPLY “BIRD" (4 LETTERS).

K)

rasmus .dahlberg@kau.se Software Security 1&I1 14/40

jser Meg wants these 500 letters: HAT.

https://xkcd.com/1354/

https://xkcd.com/1354/

Buffer overflow Stack

1 void verify_stack ()

: {

3 int verified = 0;

4 char buf[8];

s gets(buf); m Input 1: Neal ™ reject

6 /* <verification goes here> x/)

7 if (verified) { m Input 2: Caffrey » reject
8 printf("accept\n”); m Input 3: Overflow! ™ accept
9} else {

10 printf(”reject\n");

1 }

12}

Buffer overflow occurs when writing outside of a buffer’'s boundaries

rasmus .dahlberg@kau.se Software Security 1&I1 15/40

Buffer overflow Heap

1 void verify_heap ()

2 {

3 char xbuf = malloc(8%sizeof(char));

4 int xverified = malloc(sizeof(int));

5 xverified = 0;]

6 gets(buf); m Input 1: Neal " reject

7 /* <verification goes here> x/ m Input 2: Caffrey ™ reject
8 if (xverified) {

0 printf (" accept\n"); ® Input 3: aaa...aaa "™ accept
10} else {

11 printf("reject\n");

12

13}

rasmus.dahlberg@kau.se Software Security 1&I1 16/40

Memory layout

high address
environment

m Heap grows towards higher addresses stack

> Manual memory (de)allocation

m Stack grows towards lower addresses
> Automatic memory (de)allocation unused
» Each function has a ‘stack frame' memory
m Data: e.g., global and static variables heap
m Code: instructions that CPU can process data
code

low address

rasmus.dahlberg@kau.se Software Security 1&I1 17/40

Stack frames

1 int add(int a, int b)
2 {
3 int result;
4 result = a+b; . .
N o reswle Each function gets its own stack frame
6 } m Local variables
7
g int sub(int a, int b) m Function parameters
9 { m Housekeeping such as:
1o | int result: > Return address
11 result = add(a,—b); > Regi |
gister values

12 return result;
13}
14 Push ordering ™ see calling conventions
15 int algorithm ()
16 {
17 printf("result: %d\n”, sub(2,1));
18

}

rasmus.dahlberg@kau.se Software Security 1&I1 18/40

Pushing an popping stack frames

algorithm

rasmus.dahlberg@kau.se

algorithm

algorithm algorithm
<ub sub
add

sub

algorithm

algorithm

Software Security 1&I1

Return to caller's context using housekeeping information

printf

19/40

Buffer overflow on the stack continued

1 void verify_stack ()

2 {

3 int verified = 0;

4 char buf[8];

5 gets(buf);

6 /* <verification goes here> x/
7 if (verified) {

8 printf(”accept\n”);

9

} oelse {
10 printf(”reject\n");
1 }
12}

rasmus.dahlberg@kau.se Software Security 1&I1

(1/2)

m Input 4: aaa...aaa "™ segfault
m Why not segfault on heap?
m Why segfault on stack?

20/40

Buffer overflow on the stack continued (2/2)

1 void verify_stack ()

> {

3 int verified = 0;

4 char buf[8]; 0x...32 RA
5 gets(buf); 0x..28 | verified
6 /* <verification goes here> x/

7 if (verified) { i]
8 printf(”accept\n”);
9} else { 0x..20 | buf [0]
10 printf("reject\n");
1 }

12}

Can we solve the problem by pushing buf first?

rasmus.dahlberg@kau.se Software Security 1&I1 21/40

Buffer overflow that leads to code execution

rasmus.dahlberg@kau.se Software Security 1&I1 22/40

Summary of principles for stack smashing attacks

. stack grows from higher to lower addresses
<

Stack after overflow | o !
char *buffer[200] | RA |data inside buffer|other data

buffer has grown over its boundaries PEOQram J_umps N
to "unpredictable

>
>

L 1 address
low addresses high addresses
RA = return address
o Changed return address is not
Ch_a?ces are gootd thtat_(;t thr:nps outsidge program's own memory.
into a segment outside the) ’
\ The jump might succed and
program's own memory. éxecﬁjtiog will go on
The system Kkills the process,) . N
: ! . . : If there is a valid machine code,
: because of segmentation violation. : it will be executed
1. Gain control of return address 2. Point to some malicious code

rasmus.dahlberg@kau.se Software Security 1&I1 23/40

The hard part is jumping to malicious code

1. Add asm instructions in the buffer

» Usually to open a shell
> ‘Shell-code’

2. Jump to the buffer’s shell-code

Exact address of buffer?

’.
Use a nop-sled

‘In the buffer’

RA ---

shell code

nop
. —

S cee <= -4

N - -

nop

« &buf [0]

Note: nop-sled 4+ asm may also be injected to the heap—'heap spraying’

rasmus.dahlberg@kau.se Software Security 1&I1

24/40

The hard part is jumping to malicious code

1. Point to an already loaded function
> system()

2. Prepare stack with arguments
» "rm -rf /home/$USER"

msystem("rm -rf /home/$USER")

$ cat main.c
int main() { return 0; }
$ gcc main.c
$ Idd ./a.out
linux—vdso.so.1 (0x00007fff3a9e4000)

‘Return-to-libc’

libc.s0.6 => /lib/x86_64—linux—gnu/libc.so.6 (0x00007fa5bfeda000)

/1ib64 /Id—linux —x86 —64.50.2 (0x00007fa5c04cd000)

rasmus .dahlberg@kau.se Software Security 1&I1

25/40

Widely used stack smashing mitigation techniques

Idea: try to prevent the two necessary stack smashing conditions from meeting met

m Address randomization Increases jump uncertainty
m Non-executable memory Stop if instruction pointer gets here
m Stack canaries Stop if RA got tampered with

$ Idd ./a.out
linux—vdso.so.1 (0x00007ffdda7ce000)
libc.so.6 => /lib/x86_64—linux—gnu/libc.so.6 (0x00007f7f307ba000)
/1ib64 /1d—linux —x86 —64.50.2 (0x00007f7f30dad000)

$ Idd ./a.out
linux—vdso.so.1 (0x00007ffe387d4000)
libc.s0.6 => /lib/x86_64—linux—gnu/libc.s0.6 (0x00007fdd793ef000)
/1ib64 /ld—linux —x86 —64.s0.2 (0x00007fdd799e2000)

rasmus.dahlberg@kau.se Software Security 1&I1

26/40

Canaries

“[...] miners would bring a caged
canary into new coal seams. Ca-
naries are especially sensitive to
methane and carbon monoxide
[..], as long as the bird kept
singing, the miners knew their air
supply was safe.”

“Short but meaningful”

https://www.wisegeek.com/
what-does-it-mean-to-be-a-canary-in-a-coal-mine.htm

rasmus.dahlberg@kau.se Software Security 1&I1 27/40

https://www.wisegeek.com/what-does-it-mean-to-be-a-canary-in-a-coal-mine.htm
https://www.wisegeek.com/what-does-it-mean-to-be-a-canary-in-a-coal-mine.htm

Stack canaries

stack grows from higher to lower addresses

Before overflow

A

!

low addresses

char *buffer[200] CY | RA | parameters other data
buffer writes from lower to higher addresses
A
high addresses
m Terminator canaries .
Require:

m Random canaries

rasmus.dahlberg@kau.se

Software Security 1&I1

CY must be valid to use RA

28/40

Stack canaries

After overflow

NOP sled

shellcode

RA

RA

RA

RA

RA

other data

destroyed canary j

indicating stack smashing

4 buffer has grown over its boundaries

Stop running—invalid canary value!

\

Can anyone think of examples where the two canary types fail?

rasmus.dahlberg@kau.se

Software Security 1&I1

Great mitigation techniques, but we realize that...

it is still imperfect

What else can we do?

m Avoid bugs in C/C++ m Build and use tools m Use memory safe
code that help catching bugs programming languages

rasmus.dahlberg@kau.se Software Security 1&I1 30/40

Avoid bugs in C/C++ code

Sanitize all untrusted user input
Manually verify all bounds correctly

Be aware of integer underflow/overflow

Use safe(r) functions and learn caveats
> fgets vs. gets
> strncpy vs. strcpy
> man strncpy " null-termination?
Adopt a secure coding standard
» CERT C°
> MISRA C’(embedded systems)

6
https://resources.sei.cmu.edu/downloads/secure-coding/assets/sei-cert-c-coding-standard-2016-v01.pdf
https://www.misra.org.uk/Activities/MISRAC/tabid/160/Default.aspx
rasmus .dahlberg@kau.se Software Security 1&I1 31/40

https://resources.sei.cmu.edu/downloads/secure-coding/assets/sei-cert-c-coding-standard-2016-v01.pdf
https://www.misra.org.uk/Activities/MISRAC/tabid/160/Default.aspx

Build and use tools that help catching bugs Static analysis®

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 int main()

5 {
) i 6 char xbuf = malloc(8);
m Automated source code analysis before runtime 7 fgets(buf, 8, stdin);
m Output warnings if errors are suspected & printf (';)%S\”" . buf);
9 return ;
m Assess compliance with coding standards 10 }

$ splint main.c
% 3 non-gcc warnings

Details: https://www.splint.org/

8
https://www.perforce.com/blog/qac/what-static-code-analysis
rasmus.dahlberg@kau.se Software Security 1&I1 32/40

https://www.splint.org/
https://www.perforce.com/blog/qac/what-static-code-analysis

Build and use tools that help catching bugs Dynamic analysis

m Analyze what program does at runtime

m Valgrind—Iook for memory errors
m Fuzzing®—what happens on funky input?

» Random and mutation-based
» Structure-aware

» Program-aware
| 4
»

Automated feedback loops

https://upload.wikimedia.org/wikipedia/commons/
0/08/Rabbit_american_fuzzy_lop_buck_white.jpg

9Brief introduction and a few demos: https://www.youtube.com/watch?v=dMmsPwkSqOc
rasmus .dahlberg@kau.se Software Security 1&I1 33/40

https://upload.wikimedia.org/wikipedia/commons/0/08/Rabbit_american_fuzzy_lop_buck_white.jpg
https://upload.wikimedia.org/wikipedia/commons/0/08/Rabbit_american_fuzzy_lop_buck_white.jpg
https://www.youtube.com/watch?v=dMmsPwkSqOc

Is fuzzing worth the effort? American Fuzzer Lop (AFL)

The bug-o-rama trophy case

Yeah, it finds bugs. | am focusing chiefly on development and have not been running the fuzzer at a scale, but here are some of
the notable vulnerabilities and other uniquely interesting bugs that are attributable to AFL (in large part thanks to the work done by
other users):

1JG jpeg L libjpeg-turbo 1 2 libpng £
libtiff L2345 mozjpeg L PHP 12345678
Mozilla Firefox 1234 Internet Explorer 1 234 Apple Safari 1
Adobe Flash / PCRE 1284567 sqlite 123 4 OpenssL 12834567
LibreOffice 1234 poppler 1 2= freetype 1 2
GnuTLs 1 GnuPG 1234 OpenssH12345
PuTTY 12 ntpd 12 nginx123

http://lcamtuf.coredump.cx/afl/

And around 120 more projects!

rasmus.dahlberg@kau.se Software Security 1&I1 34/40

http://lcamtuf.coredump.cx/afl/

Use memory-safe programming languages

Intuition: x[y] = z should stop normal program
execution if x is non-array or y is out-of-range, and
you should not operate on raw memory addresses!'®

Challenges:
m You need low-level access to hardware
m You inherit a large C/C++ project
m Someone must implement the core correctly

What about performance? Is it a valid concern?

10 s
If you want a more precise intuition: http://www.pl-enthusiast.net/2014/07/21/memory-safety/
35/40

rasmus .dahlberg@kau.se Software Security 1&I1

http://www.pl-enthusiast.net/2014/07/21/memory-safety/

Summary

Weird machines
Over-read, over-write
Change program flow

Mitigation techniques

Tools and other options

rasmus.dahlberg@kau.se Software Security 1&I1 36/40

Assignment questions

(1/3)

1. Suppose that the code below is compiled as follows: gcc -Wall -Werror
-std=c99 main.c. Provide two integer inputs that will result in ‘unintended
behaviour' and name what this threat is called. Make assumptions if necessary.

1 #include <stdio.h>

2
3 int get_int() {
4 int v; printf(”Enter an integer: ");
5 scanf("%d", &v);
6 return v;
-
8
9 int main() {
10 int a=get_int (), b=get_int(), max=10;
1 if (a+b > max)
1 printf("%d+%d > %d\n", a, b, max);
13 else
14 printf ("%d+%d <= %d\n", a, b, max);
15

}

rasmus.dahlberg@kau.se Software Security 1&I1

2. Determine which compiler
option could be used to ensure
that the program aborts if such
unintended behaviour occurs.
Does this solution work for
unsigned ints? Why (not)?

3. What is the compliant way of
adding two unsigned integers
according to CERT C standard?

37/40

Assignment questions (2/3)

4. Suppose that the code below is compiled as follows: gcc -Wall -Werror
-std=c99 -fno-stack-protector main.c. Explain the steps necessary to trigger
the print statement. Make assumptions if necessary.

1 #include <stdio.h>

2 #include <limits.h>

3 #define SECRET UINT_MAX
4

5. How would you adapt your
strategy if SECRET was set to

5 void gotcha() { printf(” Gotcha!\n"); } 0xff0a0dff? Explain principles.
6

7 int main() { 6. Which type of buffer overflow
8 unsigned secret = 0;

o char buf[8]: mitigation technique does the

10 scanf("%s", buf); new secret value remind you of?
11 if (secret = SECRET) {

2 gotcha (); 7. Explain two other mitigation
13 . .

4 return O techniques that make it harder to
15 } execute code in a buffer overflow.

rasmus.dahlberg@kau.se Software Security 1&I1 38/40

Assignment questions (3/3)

8. Attackers may use nop-sleds to increase the likelihood of jumping to their shell-code.
To defend against this a colleague of yours suggested that all user input be filtered for
repeated nop instructions. How would you trivially bypass such a filtering mechanism?

9. What is the difference between static and dynamic code analysis?

10. Briefly explain the process of fuzzing a program: how does it work and what is the
goal? Name one fuzzer that found a buffer overflow vulnerability in a TLS library.

11. Suppose that you are hired by a consultant company to work on a brand new

project. Explain the circumstances in which you would choose to program in C/C++,
and why you might choose a different programming language in most other cases.

rasmus.dahlberg@kau.se Software Security 1&I1 39/40

Any questions?

?

Software Security 1&I1

40/40

