

Computer Structure

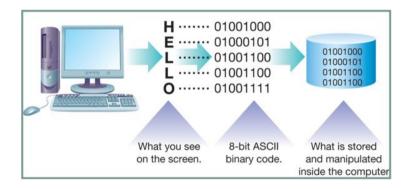
Rasmus Dahlberg

rasmus.dahlberg@kau.se Computer Structure 1/

Where do you find Computers?

- What can a computer do?
- How do you choose one?

rasmus.dahlberg@kau.se Computer Structure 2/


Learning outcome based on syllabus

- Describe the components of a computer and their interaction (ISGA01)
- Give an account of the components of a computer and their interaction (ISGA06)
- Give an account of the components of a computer and how they interact (ISGA90)

rasmus.dahlberg@kau.se Computer Structure 3/28

A typical computer

rasmus.dahlberg@kau.se Computer Structure 4/28

Current computer definitions in Swedish and English

- Digital enhet f\u00f6r ber\u00e4kning, symbolbehandling och kommunikation¹
- An electronic device for storing and processing data, typically in binary form, according to instructions given to it in a variable program²
- A computer is a device that can be instructed to carry out sequences of arithmetic or logical operations automatically via computer programming³

¹ https://www.ne.se/uppslagsverk/encyklopedi/1%C3%A5ng/dator

https://en.oxforddictionaries.com/definition/computer

³ https://en.wikipedia.org/wiki/Computer

Information theory

- The smallest piece of information is binary
- One 'bit' represents a zero or a one
- Example of sending a single bit?
- Example of sending multiple bits?

rasmus.dahlberg@kau.se Computer Structure 6/

01011001011011110110010001100001

Many different things...

- 32-bit unsigned integer: 1500472417
- 32-bit floating point: 4.21143045 · 10¹⁵
- Groups of 8 bits: 89, 111, 100, 97
 - Byte
 - ► Number between 0–255 (why?)

rasmus.dahlberg@kau.se Computer Structure 7/28

Information theory continued

Decimal numbers as we know them:

$$107 = 1 \cdot 100 + 0 \cdot 10 + 7 \cdot 1$$
$$= 1 \cdot 10^{2} + 0 \cdot 10^{1} + 7 \cdot 10^{0}$$

A position is associated with 0–9 A position is weighted by 10^i , $i \ge 0$ This is known as base 10

Why is this intuitive for us?

Binary numbers follow the same idea:

$$1101 = 1 \cdot 8 + 1 \cdot 4 + 0 \cdot 2 + 1 \cdot 1$$
$$= 1 \cdot 2^{3} + 1 \cdot 2^{2} + 0 \cdot 2^{1} + 1 \cdot 2^{0} = 13$$

A position is associated with 0–1 A position is weighted by 2^i , $i \ge 0$ This is known as base 2

Why is this intuitive for a computer?

rasmus.dahlberg@kau.se Computer Structure 8/3

Now you can proudly wear this T-shirt!

rasmus.dahlberg@kau.se Computer Structure 9/28

Be aware of different unit systems

unit	abbreviation	meaning
kilo	k	10 ³
mega	M	10^{6}
giga	G	10^{9}
tera	Т	10^{12}

(Decimal numbers as we know them)

unit	abbreviation	meaning
kibi	Ki	2^{10}
mebi	Mi	2^{20}
gibi	Gi	2^{30}
tebi	Ti	2 ⁴⁰

(Binary numbers, note $2^{10} = 1024$)

"I bought a 500 GB hard drive, but Windows says it is 465.7 GB?"

rasmus.dahlberg@kau.se Computer Structure 10

Amercian Standard Code for Information Interchange

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	1	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27		71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	н	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	1
10	Α	(LINE FEED)	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	М	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	(SHIFT IN)	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	w	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	У
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	١	124	7C	
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]

- 89: Y
- 111: o
- 100: d
- 97: a
- å, ä, ö?
 - ► UTF-8
 - ► UTF-16
 - ► UTF-32

rasmus.dahlberg@kau.se Computer Structure 11/28

Divide yourself into small groups

Interactive exersice

rasmus.dahlberg@kau.se Computer Structure 12

My office setup⁴

Computer case containing:

- Central Processing Unit (CPU)
- Random Access Memory (RAM)
- Solid State Drive (SSD)
- Hard drive (HDD)
- Power Supply Unit (PSU)
- Fan for CPU cooling
- Motherboard

https://www.dustinhome.se/favorites/index/9620211


- Does most of the computing
- Instruction set
 - ► load
 - store
 - ▶ add
 - conditional jump
 - **.**..
- Registers
- Clock speed
- Number of cores

Intel Core i7 7700K / 4.2 GHz processor LGA1151 Socket

Is faster clock speed always better?

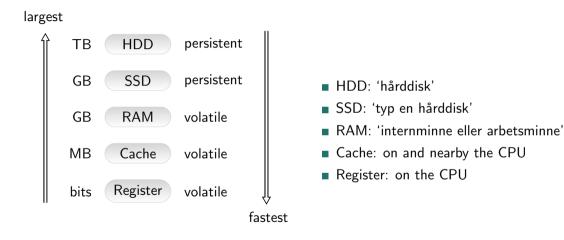
Gordon Moore predicted the number of transitors on a dense integrated circuit

https://en.wikipedia.org/wiki/Moore%27s_law#/media/File:Moore%27s_Law_Transistor_Count_1971-2016.png

Moore's law

▶ 1965: doubles every year

► 1975: doubles every two years


► ≈2025: dead

■ David House

▶ 18 months \rightarrow 2x performance

rasmus.dahlberg@kau.se Computer Structure 15/28

Different types of memory, all storing zeros and ones only!

rasmus.dahlberg@kau.se Computer Structure 16/28

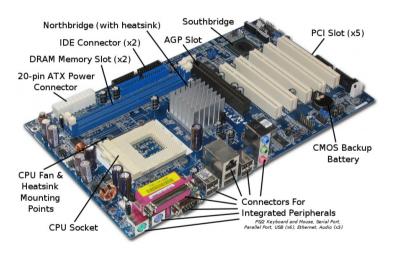
Different types of memory continued

WD Blue 4TB 3.5" Serial ATA-600

SSD

Crucial MX500 500GB Serial ATA-600

RAM


CORSAIR V LPX 32GB (2X16) DDR4 2400MHZ

■ Trade-offs between SSD and HDD?

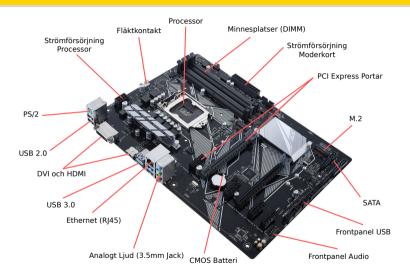
■ How much RAM do you need?

rasmus.dahlberg@kau.se Computer Structure 17/28

Motherboard (or, the thing everything is attached to)

Contains at least:

- Processor slot
- Memory slot
- Connectors, e.g.,
 - Power
 - ► SATA
 - SCSI
 - **...**
- Control circuits
 - ► BIOS
 - Cache
 - ٠..


What should you think about when you buy hardware?

rasmus.dahlberg@kau.se Computer Structure 18/28

 $^{5}{\rm https://www.asus.com/us/Motherboards/PRIME-Z370-P/HelpDesk_Manual/}$

A newer motherboard continued

rasmus.dahlberg@kau.se Computer Structure 20/28

Expantion cards usually use PCI(e)

Graphics card for complex math, geometry, and coloring ('grafikkort')

Audio card for enhanced sound experiences ('ljudkort')

Network card for data exchange over a computer network ('nätverkskort')

Is my office setup without graphics, sound, and Internet?!

rasmus.dahlberg@kau.se Computer Structure 21/3

A few common external connectors

External HDD and devices

Mainly video and audio

rasmus.dahlberg@kau.se Computer Structure 22/28

You will find the same basic components in every computer—Raspberry Pi

https://www.raspberrypi.org/

All components are embedded on a SoC:

- CPU
- Memory
- Connectors
- Control circuits

You will find the same basic components in every computer—MBP

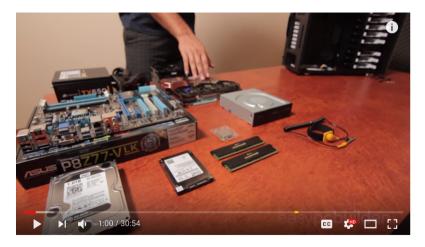
https://www.ifixit.com/Teardown/MacBook+Pro+15-Inch+Touch+Bar+Teardown/73395

rasmus.dahlberg@kau.se Computer Structure 2

You will find the same basic components in every computer—iPhone

https://www.ifixit.com/Teardown/iPhone+5s+Teardown/17383

rasmus.dahlberg@kau.se Computer Structure 2


In the labs you will (de)assemble a computer

- Be grounded
- Be "stern but fair"
- Be careful with cables
 - ► Jank? No...
 - ► Pull? Gently!
 - ► Wiggle? If you must!
- Attach in the right direction
- Avoid touching circuit boards
- Ask if you need help

rasmus.dahlberg@kau.se Computer Structure 26/

Nervous? Prepare yourself by watching a computer being built

How to Build a PC in 30 minutes with EasyPCBuilder! - Gaming PC https://www.youtube.com/watch?v=0bUghCx9iso

rasmus.dahlberg@kau.se Computer Structure 27/28

Any questions?

rasmus.dahlberg@kau.se Computer Structure 28/28