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Abstract
Certificate Transparency is an ecosystem of logs, monitors, and auditors that
hold certificate authorities accountable while issuing certificates. We show
how the amount of trust that TLS clients and domain owners need to place
in Certificate Transparency can be reduced, both in the context of existing
gradual deployments and the largely unexplored area of Tor. Our contributions
include improved third-party monitoring, a gossip protocol plugging into
Certificate Transparency over DNS, an incrementally deployable gossip-audit
model tailored for Tor Browser, and using certificates with onion addresses.
The methods used range from proof sketches to Internet measurements and
prototype evaluations. An essential part of our evaluation in Tor is to assess how
the protocols used during website visits—such as requesting an inclusion proof
from a Certificate Transparency log—affect unlinkability between senders and
receivers. We find that most false positives in website fingerprinting attacks
can be eliminated for all but the most frequently visited sites. This is because
the destination anonymity set can be reduced due to how Internet protocols
work: communication is observable and often involves third-party interactions.
Some of the used protocols can further be subject to side-channel analysis. For
example, we show that remote (timeless) timing attacks against Tor’s DNS
cache reliably reveal the timing of past exit traffic. The severity and practicality
of our extension to website fingerprinting pose threats to the anonymity
provided by Tor. We conclude that access to a so-called website oracle should be
an assumed attacker capability when evaluating website fingerprinting defenses.
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Sammanfattning
Projektet Certificate Transparency är ett ekosystem av loggar, övervakare och
granskare som håller certifikatutfärdare till svars för utfärdade webbcertifikat.
Vi visar hur säkerheten kan höjas i ekosystemet för både domäninnehavare och
TLS-klienter i nuvarande system samt som del av anonymitetsnätverket Tor.
Bland våra större bidrag är förbättrad övervakning av loggarna, ett skvallerpro-
tokoll som integrerats med DNS, ett skvaller- och granskningsprotokoll som
utformats specifikt för Tors webbläsare och ett förslag på hur domännamn
med adresser i Tor kan bli mer tillgängliga. De metoder som använts varierar
från säkerhetsbevis till internetmätningar och utvärderingar av forskningspro-
totyper. En viktig del av vår utvärdering i Tor är att avgöra hur protokoll som
används av webbläsare påverkar möjligheten att koppla ihop användare med
besökta webbplatser. Detta inkluderar existerande protokoll samt nya tillägg
för att verifiera om webbplatsers certifikat är transparensloggade. Våra resultat
visar att i många fall kan falska positiva utslag filtreras bort vid mönsteri-
genkänning av Tor-användares krypterade trafik (eng: website fingerprinting).
Orsaken är att besök till de flesta webbplatser kan uteslutas till följd av hur
internetprotokoll fungerar: kommunikation är observerbar och involverar ofta
interaktioner med tredjeparter. Vissa protokoll har dessutom sidokanaler som
kan analyseras. Vi visar exempelvis att Tors DNS-cache kan undersökas med
olika varianter av tidtagningsattacker. Dessa attacker är enkla att utföra över
internet och avslöjar vilka domännamn som slagits upp vid angivna tidpunkter.
De förbättrade mönsterigenkänningsattackerna mot webbplatser är realistiska
och hotar därför Tors anonymitet. Vår slutsats är att framtida försvar bör
utvärderas utifrån att angripare har tillgång till ett så kallat webbplatsorakel.

Nyckelord: Granskning, Certificate Transparency, DNS, Skvaller, Sidokanaler,
Tidtagningsattacker, Tor, Tors webbläsare, Mönsterigenkänning,Webbplatsorakel
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1 Introduction
The security posture of the Internet increased significantly throughout the last
decade. For example, the cleaned-up and formally verified TLS 1.3 protocol
that underpins HTTPS has been rolled-out gradually [44], the certificates that
specify which public keys to use when bootstrapping a secure connection can
be obtained for free and automatically [1], and web browsers have shifted from
positive to negative security indicators in favor of security-by-default [109]. The
use of end-to-end encryption has further become the norm with services such
as DNS-over-HTTPS [43], virtual private networks [27], Tor [24], and secure
messaging [101] gaining traction. In other words, the era of attackers that can
passively snoop and actively tamper with unencrypted network traffic is over.

What will remain the same is the incentive for attackers to snoop and
tamper with network traffic. Therefore, the focus is (and will likely continue
to be) on circumventing protocols that add security and privacy as they are
deployed in the real world. For example, there is a long history of certificate
mis-issuance that allows attackers to impersonate websites and thus insert
themselves as machines-in-the-middle (“MitM”) without actually breaking
TLS [17, 96]. Or, in the case of encrypted channels that are hard to intercept,
instead analyzing traffic patterns to infer user activity like which website is
being visited [14, 40, 41, 58, 75, 102]. The bad news is that attackers only need
to find one vulnerability in a deployed protocol or its software. Sometimes,
such vulnerabilities can be purchased by zero-day brokers like Zerodium [114].

To address an attack vector, it is common to add countermeasures that
frustrate attackers and/or increase the risk involved while trying to exploit a
system. A good example is how the certificate authority ecosystem evolved.
For background, certificate authorities are trusted parties that validate domain
names before issuing certificates that list their public keys. Web browsers are
shipped with hundreds of trusted certificate authorities, which means that the
resulting TLS connections cannot bemore secure than the difficulty of hijacking
the weakest-link certificate authority [17]. A proposal eventually deployed to
mitigate this issue is Certificate Transparency: an ecosystem of public append-
only logs that publishes all certificates so that any mis-issuance can be detected
by monitors [54, 55]. These logs have a cryptographic foundation that holds
them and the issuing certificate authorities accountable, at least in theory. In
practice, the logs are essentially trusted parties that must act honestly due to
how web browsers shape their policies to respect user privacy [3, 33, 64, 97].

The first objective of this thesis is to better understand the current limits
of Certificate Transparency by proposing and evaluating improvements which
reduce the amount of trust that needs to be placed in third-party monitors and
logs. We make a dent in the problem of Certificate Transparency verification
both generally and concretely in the context of Tor Browser, which unlike
Google Chrome and Apple’s Safari does not support Certificate Transparency
yet. For context, Tor Browser is a fork of Mozilla’s Firefox that (among
other things) routes user traffic through the low-latency anonymity network
Tor [24, 77]. As part of our pursuit to improve the status quo for Certificate
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Transparency verification in Tor Browser, the second objective of this thesis is
to evaluate how the protocols used during website visits affect unlinkability be-
tween senders (web browsers) and receivers (websites). Our evaluation applies
to our addition of Certificate Transparency and other protocols already in use,
e.g., DNS, real-time bidding [110], and certificate revocation checking [85].

The remainder of the introductory summary is structured as follows. Sec-
tion 2 introduces background that will help the reader understand the context
and preliminaries of the appended papers. Section 3 defines our research
questions and overall objective. Section 4 provides an overview of our re-
search methods. Section 5 describes our contributions succinctly. Section 6
summarizes the appended papers that are published in NordSec (Paper I),
SECURWARE (Paper II), PETS (Paper III and V), WPES (Paper IV), and
USENIX Security (Paper VI). Section 7 positions our contributions with
regard to related work. Section 8 concludes and briefly discusses future work.

2 Background
This section introduces background on Certificate Transparency and Tor.

2.1 Certificate Transparency
The web’s public-key infrastructure depends on certificate authorities to issue
certificates that map domain names to public keys. For example, the certificate
of www.example.com is issued by DigiCert and lists a 2048-bit RSA key [87].
The fact that DigiCert signed this certificate means that they claim to have
verified that the requesting party is really www.example.com, typically by
first ensuring that a specified DNS record can be uploaded on request [11].
If all certificate authorities performed these checks correctly and the checks
themselves were fool-proof, a user’s browser could be sure that any certificate
signed by a certificate authority would list a verified public key that can be
used for authentication when connecting to a website via TLS. Unfortunately,
there are hundreds of trusted certificate authorities and a long history of issues
surrounding their operations in practice [8, 17, 96]. One of the most famous
incidents took place in 2011: an attacker managed to mis-issue certificates from
DigiNotar to intercept traffic towards Google and others in Iran [45]. The
astonishing part is that this incident was first detected seven weeks later.

Certificate Transparency aims to facilitate detection of issued certificates,
thus holding certificate authorities accountable for any certificates that they
mis-issue [54, 55]. The basic idea is shown in Figure 1. In addition to regular
validation rules, browsers ensure certificates are included in a public append-
only Certificate Transparency log. This allows anyone to get a concise view of
all certificates that users may encounter, including domain owners like Google
who can then see for themselves whether any of the published certificates are
mis-issued. The parties inspecting the logs are called monitors. Some monitors
mirror all log entries [86], while others discard most of them in pursuit of
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Figure 1: The idea of Certificate Transparency. Certificates encountered by
users must be included in a public log so that monitors can detect mis-issuance.

finding matches for pre-defined criteria like *.example.com [95]. Another
option is subscribing to certificate notifications from a trusted third-party [34].

What makes Certificate Transparency a significant improvement compared
to the certificate authority ecosystem is that the logs stand on a cryptographic
foundation that can be verified. A log can be viewed as an append-only tamper-
evident list of certificates. It is efficient1 to prove cryptographically that a
certificate is in the list, and that a current version of the list is append-only
with regard to a previous version (i.e., no tampering or reordering).2 These
properties follow from using a Merkle tree structure that supports inclusion
and consistency proofs [19, 28, 55, 67]. The reader only needs to know that
these proofs are used to reconstruct a log’s Merkle tree head, often referred
to as a root hash. It is a cryptographic hash identifying a list of certificates
uniquely in a tree data structure. The logs sign root hashes with the number
of entries and a timestamp to form signed tree heads. So, if an inconsistency is
discovered, it cannot be denied. Log operators are therefore held accountable
for maintaining the append-only property. A party that verifies the efficient
transparency log proofs without downloading all the logs is called an auditor.

A log that signs two inconsistent tree heads is said to perform a split-view. To
ensure that everyone observes the same append-only logs, all participants of the
Certificate Transparency ecosystem must engage in a gossip protocol [16, 72].
In other words, just because Alice observes an append-only log, it is not
necessarily the same append-only log that Bob observes. Therefore, Alice and
Bob must exchange signed tree heads and verify consistency to assert that the
log operators play by the rules and only append certificates. Without a secure
gossip protocol, log operators would have to be trusted blindly (much like
certificate authorities before Certificate Transparency). RFC 6962 defers the
specification of gossip [55], with little or no meaningful gossip deployed yet.

Rolling out Certificate Transparency without breakage on the web is a
challenge [98]. Certificates must be logged, associated proofs delivered to end-
user software, and more. One solution RFC 6962 ultimately put forth was the
introduction of signed certificate timestamps. A signed certificate timestamp is
a log’s promise that a certificate will be appended to the log within a maximum

1Efficient refers to space-time complexity O(log(n) ) , where n is the number of log entries.
2Interested readers can refer to our Merkle tree and proof technique introduction online [21].
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merge delay (typically 24 hours). Verifying if a log holds its promise is usually
called auditing. Certificate authorities can obtain signed certificate timestamps
and embed them in their final certificates by logging a pre-certificate. As such,
there is no added latency from building the underlying Merkle tree and no
need for server software to be updated (as the final certificate contains the
information needed). The current policy forGoogle Chrome andApple’s Safari
is to reject certificates with fewer than two signed certificate timestamps [3, 33].
How to request an inclusion proof for a promise without leaking the user’s
browsing history to the log is an open problem [64]. In other words, asking
for an inclusion proof trivially reveals the certificate of interest to the log.

Other than embedding signed certificate timestamps in certificates, they can
be delivered dynamically to end-users in TLS extensions and stapled certificate
status responses. For example, Cloudflare uses the TLS extension delivery
method to recover from log incidents without their customers needing to
acquire new certificates [100]. Several log incidents have already happened
in the past, ranging from split-views [6, 92, 93] to broken promises of timely
logging [29, 37, 5, 91] and potential key compromise [84]. These are all good
scaresmotivating continued completion of Certificate Transparency in practice.

In summary, the status quo is for web browsers to require at least two
signed certificate timestamps before accepting a certificate as valid. Merkle
tree proofs are not verified. Gossip is not deployed. The lack of a reliable
gossip-audit model means that the logs are largely trusted parties.3 We defer
discussion of related work in the area of gossip-audit models until Section 7.

2.2 Tor
The Tor Project is a 501(c)(3) US nonprofit that advances human rights and
defends privacy online through free software and open networks [79]. Some of
the maintained and developed components include Tor Browser and Tor’s relay
software. Thousands of volunteers operate relays as part of the Tor network,
which routes the traffic of millions of daily users with low latency [61]. This
frustrates attackers like Internet service providers that may try linking who is
communicating with whom from their local (non-global) vantage points [24].

Usage of Tor involves tunneling the TCP traffic of different destinations
(such as all flows associated with a website visit to example.com) in fixed-size
cells on independent circuits. A circuit is built through a guard, a middle, and
an exit relay. At each hop of the circuit, one layer of symmetric encryption
is peeled off. The used keys are ephemeral and discarded together with all
other circuit state after at most 10 minutes (the maximum circuit lifetime).
This setup allows guard relays to observe users’ IP addresses but none of the
destination traffic. In contrast, exit relays can observe destination traffic but no
user IP addresses. The relays used in a circuit are determined by Tor’s end-user
software. Such path selection is randomized and bandwidth-weighted but starts

3Historical remark: the lack of verification led Google to require that all certificates be disclosed
in at least one of their logs to validate [97]. The so-called one-Google log requirement was recently
replaced. Google Chrome instead interacts with Google’s trusted auditor. See Section 7.
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with a largely static guard set to protect users from eventually entering the
network from a relay an attacker volunteered to run.

Tor’s consensus lists the relays that make up the network. As the name
suggests, it is a document agreed upon by a majority of trusted directory
authorities. Five votes are currently needed to reach a consensus. Examples of
information added to the Tor consensus include tunable network parameters
and uploaded relay descriptors with relevantmetadata, e.g., public key, available
bandwidth, and exit policy. Each relay in the consensus is also assigned different
flags based on their configuration and observed performance, e.g., Guard,
MiddleOnly, Fast, Stable, and HSDir. The latter means that the relay is a
hidden service directory, which refers to being part of a distributed hash table
that helps users lookup onion service introduction points.

An onion service is a self-authenticated server identified by its public key.
Onion services are only reachable through the Tor network. Users that are
aware of a server’s onion address can consult the distributed hash table to find
its introduction points. To establish a connection, a user builds a circuit to
a rendezvous point. A request is then sent to one of the current introduction
points, which informs the onion service that it may build its own circuit to
meet the user at their rendezvous point. In total, six relays are traversed while
interacting with an onion service. This setup allows not only the sender but
also the receiver to be anonymous. The receiver also benefits from a large
degree of censorship resistance as the server location may be hidden. The main
drawback of onion services is that their non-mnemonic names are hard to
discover and remember. Some sites try to overcome this by setting their onion
addresses in onion location HTTP headers or HTML attributes [80].

Many users use Tor Browser to connect to the Tor network. In addition to
routing traffic as described above, Tor Browser ships with privacy-preserving
features like first-party isolation to not share any state across different origins,
settings that frustrate browser fingerprinting, and disk-avoidance to not store
browsing-related history as well as other identifying information to disk [77].
Tor Browser is a fork of Mozilla’s Firefox. Unfortunately, neither Firefox
nor Tor Browser supports any form of Certificate Transparency. Conducting
undetected machine-in-the-middle attacks against Tor users is thus relatively
straightforward: compromise or coerce the weakest-link certificate authority,
then volunteer to operate an exit relay and intercept network traffic. Such
interception has previously been found with self-signed certificates [113].

While global attackers are not within Tor’s threat model, it is in scope to
guard against various local attacks [24]. For example, the intended attacker may
passively observe a small fraction of the network and actively inject their own
packets. Figure 2 shows the typical attacker setting of website fingerprinting,
where the attacker observes a user’s entry traffic with the goal of inferring
which website was visited solely based on analyzing encrypted traffic [14, 40,
41, 58, 75, 102]. Website fingerprinting attacks are evaluated in the open-world
or closed-world settings. In the closed-world setting, the attacker monitors
(not to be confused with Certificate Transparency monitoring) a fixed list of
websites. A user visits one of the monitored sites, and the attacker needs to



8

Figure 2: The setting of a website fingerprinting attack. A local passive attacker
analyzes a user’s encrypted network traffic as it enters the network. The goal
is to infer which website is visited. (Figure reprinted from Paper V.)

determine which one. The open-world setting is the same as the closed-world
setting, except that the user may also visit unmonitored sites. The practicality
of website fingerprinting attacks is up for debate, e.g., ranging from challenges
handling false positives to machine-learning dataset drift [15, 47, 76, 111].

In summary, Tor is a low-latency anonymity network often accessed with
Tor Browser. Among the threats that Tor aims to protect against are local
attackers that see traffic as it enters or leaves the network (but not both at the
same time all the time). A website fingerprinting attack is an example of a
passive attack that operates on entry traffic. A machine-in-the-middle attack is
an example of an active attack that typically operates on exit traffic. Discussion
of related work in the area of website fingerprinting is deferred until Section 7.

3 Research Questions
The overall research objective spans two different areas: transparency logs
and low-latency anonymity networks. We aim to reduce trust assumptions in
transparency log solutions and to apply such solutions in anonymous settings
for improved security and privacy. We defined the following research questions
to make this concrete in Certificate Transparency and Tor, the two ecosystems
with the most history and dominant positions in their respective areas.

1. Can trust requirements in Certificate Transparency be reduced in practice?
Transparency logs have a cryptographic foundation that supports efficient
verification of inclusion and consistency proofs. Such proofs are useful
to reduce the amount of trust that is placed in the logs. The roll-out
of Certificate Transparency has yet to start using these proofs, and to
employ a gossip protocol that ensures the same append-only logs are
observed. Part of the challenge relates to privacy concerns as parties
interact with each other, as well as deploying gradually without breakage.
We seek practical solutions that reduce the trust requirements currently
placed in the logs and third-party monitors while preserving user privacy.
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2. How can authentication of websites be improved in the context of Tor?
Tor Browser has yet to support Certificate Transparency to facilitate
detection of hijacked websites. This includes HTTPS sites but also onion
services that may be easier to discover reliably with more transparency.
We seek incremental uses of Certificate Transparency in Tor that preserve
user privacy while engaging in new verification protocols to reduce trust.

3. How do the protocols used during website visits affect unlinkability between
Tor users and their destination websites?
Several third-parties become aware of a user’s browsing activities while
a website is visited. For example, DNS resolvers and certificate status
respondersmay be consulted for domain name resolution and verification
of if a certificate has been revoked. Fetching an inclusion proof from a
Certificate Transparency log would reveal the same type of information.
We seek to explore how unlinkability between Tor users and their exit
destinations is affected by the multitude of protocols used during website
visits. The considered setting is the same as in website fingerprinting,
except that the attacker may take additional passive and active measures.
For example, the attacker may volunteer to run a Certificate Trans-
parency log (passive) or inject carefully-crafted packets into Tor (active).

4 Research Methods
We tackle privacy and security problems in the field of computer science [23,
26]. Our work is applied, following the scientific method for security and
experimental networking research. Exactly what it means to use the scientific
method in these areas is up for debate [7, 39]. However, at a glance, it is about
forming precise and consistent theories with falsifiable predictions as in other
sciences except that the objects of study are information systems in the real world.

A prerequisite to formulating precise, consistent, and falsifiable theories is
that there are few implicit assumptions. Therefore, scientific security research
should be accompanied by definitions of security goals and attacker capabilities:
what does it mean that the system is secure, and what is the attacker (not)
allowed to do while attacking it [51]? Being explicit about the overall setting
and threat model is prevalent in formal security work like cryptography, where
an abstract (mathematical) model is used to show that security can be proved
by reducing to a computationally hard problem (like integer factorization) or a
property of some primitive (like the collision resistance of a hash function) [50].
It is nevertheless just as crucial in less formal work that deals with security
of systems in the real (natural) world—the exclusive setting of the scientific
method—which usually lends itself towards break-and-fix cycles in light of
new observations. Where to draw the line between security work and security
research is not trivial. However, a few common failures of past “security research”
include not bringing observations in contact with theory, not making claims
and assumptions explicit, or simply relying on unfalsifiable claims [39].
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While deductive approaches (like formal reduction proofs) are instrumental
in managing complexity and gaining confidence in different models, more than
these approaches are required as a model’s instantiationmust also be secure [51].
It is common to complement abstract modeling with real-world measurements
as well as systems prototyping and evaluations [7]. Real-world measurements
measure properties of deployed systems like the Internet, the web, and the Tor
network. For example, a hypothesis in a real-world measurement could be that
(non-)Tor users browse according to the same website popularity distribution.
Sometimes these measurements involve the use of research prototypes, or the
research prototypes themselves become the objects of study to investigate
properties of selected system parts (say, whether a packet processor with new
features is indistinguishable from some baseline as active network attackers
adaptively inject packets of their choosing). If it is infeasible, expensive, or
unsafe (see below) to study a real-world system, a simulation may be studied
instead. The downside of simulation is that the model used may not be a good
approximation of the natural world, similar to formal cryptographic modeling.

The appended papers use all of the above approaches to make claims about
security, privacy, and performance in different systems, sometimes with regard
to an abstract model that can be used as a foundation in the natural world to
manage complexity. Paper I contains a reduction proof sketch to show reliance
on standard cryptographic assumptions. Paper V extends past simulation se-
tups to show the impact of an added attacker capability. Meanwhile, Paper III
models part of the Tor network with mathematical formulas to estimate perfor-
mance overhead. All but Paper IV contain real-world measurements relating
to Internet infrastructure, websites, certificates, Tor, or practical deployability
of our proposals. All but Paper III contain research prototypes with associated
evaluations, e.g., performance profiling, as well as corroborating or refuting our
security definitions in experimental settings. All papers include discussions of
security and privacy properties as well as their limitations and strengths in the
chosen settings (where assumptions are explicit and threat models motivated).

Throughout our experiments, we strived to follow best practices like doc-
umenting the used setups, making datasets and associated tooling available,
reducing potential biases by performing repeated measurements from multiple
different vantage points, and discussing potential biases (or lack thereof) [7].
We also interacted with Tor’s research safety board [81] to discuss the ethics and
safety of our measurements in Paper VI, and refrained frommeasuring real (i.e.,
non-synthetic) usage of Tor whenever possible (Papers III and V). Finally, the
uncovered bugs and vulnerabilities in Papers V–VI were responsibly disclosed
to the Tor project. This included suggestions on how to move forward.

5 Contributions
The main contributions of this thesis are listed below. An overview of how
they relate to our research questions and appended papers is shown in Figure 3.
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Paper I Paper II Paper III Paper IV Paper V Paper VI

C1 C2 C3 C4 C5 C6

RQ1 RQ2 RQ3

Figure 3: Overview of appended papers, contributions, and research questions.

1. Reduced trust in third-party monitoring with a signed tree head extension
that shifts trust from non-cryptographic certificate notifications to a log’s
gossip-audit model (or if such a model does not exist yet, the logs themselves).
Paper I applies existing cryptographic techniques for constructing static
and lexicographically ordered Merkle trees so that certificates can be
wild-card filtered on subject alternative names with (non-)membership
proofs. This building block is evaluated in the context of Certificate
Transparency, including a security sketch and performance benchmarks.

2. Increased probability of split-view detection by proposing gossip protocols
that disseminate signed tree heads without bidirectional communication.
Paper II explores aggregation of signed tree heads at line speed in pro-
grammable packet processors, facilitating consistency proof verification
on the level of an entire autonomous system. Such verification can be
indistinguishable from an autonomous system without any split-view
detection to achieve herd immunity, i.e., protection without aggregation.
Aggregation at 32 autonomous systems can protect 30-50% of the IPv4
space. Paper III explores signed tree heads in Tor’s consensus. To reliably
perform an undetected split-view against log clients that have Tor in their
trust root, a log must collude with a majority of directory authorities.

3. Improved detectability of website hijacks targeting Tor Browser by proposing
privacy-preserving and gradual roll-outs of Certificate Transparency in Tor.
Paper III explores adoption of Certificate Transparency in Tor Browser
with signed certificate timestamps as a starting point, then leveraging the
decentralized network of relays to cross-log certificates before ultimately
verifying inclusion proofs against a single view in Tor’s consensus. The
design is probabilistically secure with tunable parameters that result in
modest overheads. Paper IV shows that Certificate Transparency logging
of domain names with associated onion addresses helps provide forward
censorship-resistance and detection of unwanted onion associations.
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4. An extension of the attacker model for website fingerprinting that provides
attackers with the capability of querying a website oracle.
A website oracle reveals whether a monitored website was (not) visited
by any network user during a specific time frame. Paper V defines and
simulates website fingerprinting attacks with website oracles, showing
that most false positives can be eliminated for all but the most frequently
visited websites. A dozen sources of real-world website oracles follow
from the protocols used during website visits. We enumerate and classify
those sources based on ease of accessibility, reliability, and coverage. The
overall analysis includes several Internet measurements.

5. Remotely-exploitable probing-attacks on Tor’s DNS cache that instantiate a
real-world website oracle without any special attacker capabilities or reach.
Paper V shows that timing differences in end-to-end response times can
be measured to determine whether a domain name is (not) cached by
a Tor relay. An estimated true positive rate of 17.3% can be achieved
while trying to minimize false positives. Paper VI improves the attack
by exploiting timeless timing differences that depend on concurrent
processing. The improved attack has no false positives or false negatives.
Our proposed bug fixes and mitigations have been merged in Tor.

6. A complete redesign of Tor’s DNS cache that defends against all (timeless)
timing attacks while retaining or improving performance compared to today.
Paper VI suggests that Tor’s DNS cache should only share the same
preloaded domain names across different circuits to remove the remotely-
probable state that reveals information about past exit traffic. A network
measurement with real-world Tor relays shows which popularity lists
are good approximations of Tor usage and, thus, appropriate to preload.
Cache-hit ratios can be retained or improved compared to today’s Tor.

6 Summary of Appended Papers
The appended papers and their contexts are summarized below. Notably, all
papers are in publication-date order except that Paper V predates Papers III–IV.

Paper I – Verifiable Light-Weight Monitoring for Certificate Transparency
Logs

An often overlooked part of Certificate Transparency is that domain owners
are expected to inspect the logs for mis-issued certificates continuously. The
cost and required expertise to do so have led to the emergence of third-party
monitoring services that notify domain owners of newly issued certificates
that they subscribe to. For example, one may subscribe to email notifications
whenever a certificate is issued for *.example.com. One downside of such
third-party monitoring is that these notification services become trusted parties
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with little or no accountability with regard to omitted certificate notifications.
We show how to add this accountability and tie it to the gossip-audit model
employed by the Certificate Transparency ecosystem by proposing verifiable
light-weight monitoring. The idea is for logs to batch appended certificates into
an additional data structure that supports wild-card (non-)membership proofs.
As a result, third-party monitors can prove cryptographically that they did not
omit any certificate notifications selectively. Our experimental performance
evaluation shows that overhead can be tuned to be small for all involved parts.

Paper II – Aggregation-Based Certificate Transparency Gossip

Another often overlooked part of Certificate Transparency is that monitors
and end-users who browse websites must observe the same append-only logs.
For example, if the same append-only logs are not observed, an end-user may
connect to a website that serves a mis-issued certificate that no monitor will
discover. This would largely defeat the purpose of public logging, which is why
RFC 6962 specifies that multiple gossip protocols should be defined separately
in the future. We define one such protocol that plugs into the (at the time
current) idea of having end-users interact with the logs through DNS. Our
work is exploratory, using recent advancements in programmable packet pro-
cessors that allow turning routers, switches, and network interface cards into
aggregators of tree heads that the logs signed and transmitted in plaintext via
DNS. The aggregated tree heads are then used as a reference while challenging
the logs to prove consistency, thus protecting entire vantage points from unde-
tected split views. A different network path (like Tor) can be used to break out
of a local vantage point to increase the likelihood of global consistency. If the
security definition for aggregation indistinguishability is satisfied, vantage points
without an aggregator may also receive protection due to herd immunity. Our
P4 and XDP prototypes satisfy the notion of aggregation indistinguishability
at line-rate with regard to throughput. Prevalent vantage points to roll out
aggregation-based gossip include autonomous systems and Internet exchange
points that route the traffic of many users. Our RIPE Atlas measurements
show that 32 autonomous systems could protect 30-50% of the IPv4 space from
undetected split views. End-users merely need to use plaintext DNS for opt-in.

Paper III – Privacy-Preserving & Incrementally-Deployable Support for
Certificate Transparency in Tor

One deployment challenge of Certificate Transparency is to ensure that moni-
tors and end-users are engaged in gossip-audit protocols. This is particularly
difficult for end-users because such engagement can harm privacy. For example,
verifying that a certificate is included by fetching an inclusion proof from a log
reveals which website was visited. We propose a gradual roll-out of Certificate
Transparency in Tor Browser that preserves privacy due to and how we use the
anonymity network Tor. The complete design holds log operators accountable
for certificates they promise to append by having Tor relays fetch inclusion
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proofs against the same view agreed upon by directory authorities in Tor’s con-
sensus. Found issues (if any) are reported to trusted auditors. The incremental
design side-steps much of the practical deployment effort by replacing the
audit-report pattern with cross-logging of certificates in independent logs, thus
assuming that at least one log is honest as opposed to no log in the complete
design. All Tor Browser needs to do is verify log signatures and then submit the
encountered certificates to randomly selected Tor relays. Such submissions are
probabilistic to balance performance against the risk of eventual detection of
log misbehavior. Processing of the submitted certificates is also randomized to
reduce leakage of real-time browsing patterns, something Tor Browser cannot
do on its own due to criteria like disk avoidance and the threat model for
wanting Certificate Transparency in the first place. We provide a security
sketch and estimate performance overhead based on Internet measurements.

Paper IV – SauteedOnions: Transparent Associations fromDomainNames
to Onion Addresses

Many prominent websites are also hosted as Tor onion services. Onion services
are identified by their public keys and subject to onion routing, thus offering
self-authenticated connections and censorship resistance. However, the non-
mnemonic names are a limitation due to being hard to discover and remember.
We explore how certificates with onion addresses may improve the status quo
by proposing sauteed onions, transparent associations from domain names to
onion addresses with the help of Certificate Transparency logs. The idea is to
extend a website’s regular certificate with an associated onion address. This
makes it possible to offer certificate-based onion location that is no less targeted
than the HTTPS connection facilitating the discovery, as well as name-to-onion
search engines that use the append-only logs for verifiable population of their
databases. The achieved goals are consistency of available onion associations,
improved third-party discovery of onion associations, and forward censorship-
resistance. To be discovered, sites must opt-in by obtaining a sauteed onion
certificate. Our prototypes for certificate-based onion location and third-party
search engines use an existing backward-compatible format. We discuss this
trade-off and note that a certificate extension may be used in the future.

Paper V – Website Fingerprinting with Website Oracles

One of the properties Tor aims to provide against local network attackers is
unlinkability between end-users (sender anonymity set) and their destinations
on the Internet (receiver anonymity set). A website fingerprinting attack aims
to break anonymity in this model by inferring which website an identifiable
end-user is visiting based only on the traffic entering the Tor network. We
extend the attacker model for website fingerprinting attacks by introducing the
notion of website oracles. A website oracle answers the following question: was
website w visited during time frame t ? In other words, the attacker can query
the receiver anonymity set for websites that were (not) visited. Our simulations
show that augmenting past website fingerprinting attacks to include website
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oracles significantly reduces false positives for all but the most popular websites,
e.g., to the order of 10−6 for classifications around Alexa top-10k and much less
for the long tail of sites. Further, some earlier website fingerprinting defenses
are largely ineffective in the (stronger) attacker model that includes website
oracles. We discuss a dozen real-world website oracles ranging from centralized
access logs to widely accessible real-time bidding platforms and DNS caches,
arguing that they are inherent parts of the protocols used to perform website
visits. Therefore, access to a website oracle should be an assumed attacker
capability when evaluating which website fingerprinting defenses are effective.

Paper VI – Timeless Timing Attacks and Preload Defenses in Tor’s DNS
Cache

Tor relays cache resolved domains with constant time-to-live values not to
reveal information about past exit traffic while boosting performance. We
show that this caching strategy and its implementation in the live Tor network
can be exploited by a timeless timing attack that leaks if a domain is (not)
cached. Further, the time that a domain was inserted into the cache can be
inferred by repeated probes. Our attack prototype’s experimental evaluation
in real conditions shows that there are neither false positives nor false negatives
(10M repetitions). Thus, it is useful for instantiating a real-world website
oracle without requiring any special attacker capabilities or reach (just a modest
computer that can create a Tor circuit). One of ourmitigations has beenmerged
in Tor: probabilistic time-to-live values that make the time-of-insertion fuzzy.
Long-term, Tor’s DNS cache could be redesigned to preload the same domains
at all exits. Such preloading would eliminate all (timeless) timing attacks
in Tor’s DNS cache because the same domains would always be (un)cached
across different circuits. To retain performance within the same circuit, we
propose that the preloaded domains should be complemented by a dynamic
same-circuit cache that is not shared across circuits. Our four-month-long
DNS cache measurement at two 100 Mbit/s exit relays informs on today’s
baseline performance. It is compared to a preloaded DNS cache based on
different variations of three popularity lists: Alexa, Tranco, and Umbrella.
A preloaded DNS cache can be as performant as today with similar resource
usage or significantly improve cache-hit ratios by 2-3x. However, the increased
cache-hit ratios have the cost of modest increases in memory and resolver load.

7 Related Work
This section positions the appended papers with regard to related work. For
Certificate Transparency, this includes approaches towards signed certificate
timestamp verification, gossip, and the problem of monitoring the logs. The
related work with regard to Tor is focused on the practicality of website
fingerprinting attacks and prior use of side-channels (such as timing attacks).
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7.1 Certificate Transparency Verification
Approaches that fetch inclusion proofs have in common that they should
preserve privacy by not revealing the link between users and visited websites.
Eskandarian et al. mention that Tor could be used to overcome privacy con-
cerns; however, it comes at the cost of added infrastructure requirements [31].
Lueks and Goldberg [59] and Kales et al. [49] suggest that logs could provide
inclusion proofs using multi-server private information retrieval. This requires
a non-collusion assumption while also adding significant overhead. Laurie
suggests that users can fetch inclusion proofs via DNS as their resolvers already
learned the destination sites [53]. While surveying signed certificate timestamp
auditing, Meiklejohn et al. point out that Certificate Transparency over DNS
may have privacy limitations [64]. For example, the time of domain lookups
and inclusion proof queries are detached. Paper II uses Laurie’s approach as a
premise while proposing a gossip protocol. Paper III applies Certificate Trans-
parency in a context where Tor is not additional infrastructure (Tor Browser).

Several proposals try to avoid inclusion proof fetching altogether. Dirk-
sen et al. suggest that all logs could be involved in the issuance of a signed
certificate timestamp [25]. This makes it harder to violate maximum merge de-
lays without detection but involves relatively large changes to log deployments.
Nordberg et al. suggest that signed certificate timestamps can be handed back
to the origin web servers on subsequent revisits [72], which has the downside
of assuming that machine-in-the-middle attacks eventually cease for detection.
Nordberg et al. [72] as well as Chase and Meiklejohn [13] suggest that some
clients/users could collaborate with a trusted auditor. Stark and Thompson
describe how users can opt-in to use Google as a trusted auditor [99]. This
approach was recently replaced by opt-out auditing that cross-checks a frac-
tion of signed certificate timestamps with Google using k-anonymity [22].
Henzinger et al. show how such k-anonymity can be replaced with a single-
server private information retrieval setup that approaches the performance of
prior multi-server solutions [38]. None of the latter two proposals provide
a solution for privately reporting that a log may have violated its maximum
merge delay because the trusted auditor is assumed to know about all signed
certificate timestamps. Eskandarian et al. show how to prove that a log omitted
a certificate privately [31]. However, they use an invalid assumption about
today’s logs being in strict timestamp order [64]. Paper III suggests that Tor
Browser could submit a fraction of signed certificate timestamps to randomly
selected Tor relays. These relays perform further auditing on Tor Browser’s
behalf: much like a trusted auditor, except that no single entity is running it.

Merkle trees fix log content—not promises of logging. Therefore, inclu-
sion proof fetching by users or their trusted parties must be accompanied by
consistency verification and gossip to get a complete gossip-audit model [55].
Chuat et al. suggest that users and web servers can pool signed tree heads,
gossiping about them as they interact [16]. Nordberg et al. similarly suggest
that users can pollinate signed tree heads as they visit different web servers [72].
Hof and Carle suggest that signed tree heads could be cross-logged to make all
logs intertwined [42]. Gunn et al. suggest multi-path fetching of signed tree
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heads [36], which may make persistent split-views hard depending on the used
multi-paths. Syta et al. suggest that independent witnesses could cosign the logs
using threshold signatures [103]. Smaller-scale versions of witness cosigning
received attention in industry [18, 65], and generally in other types of trans-
parency logs as well [60]. Larger browser vendors could decide to push the
same signed tree heads to their users, as proposed by Sleevi and Messeri [94].
Paper II uses the operators of network vantage points for aggregating and
verifying signed tree heads to provide their users with gossip-as-a-service, how-
ever assuming plaintext DNS traffic and a sound signed tree head frequency
as defined by Nordberg et al. [72]. We used the multi-path assumptions of
Gunn et al. to break out of local vantage points. In contrast, Paper III ensures
that the same logs are observed in the Tor network by incorporating signed tree
heads into Tor’s consensus (thus making directory authorities into witnesses).

Li et al. argue that it would be too costly for most domains to run a moni-
tor [57].4 Similar arguments have been raised before, and lead to alternative
data structures that could make monitoring more efficient than today’s over-
head [30, 66, 104]. Paper I falls into this category, as the root of an additional
static lexicographically-ordered Merkle tree is added to a log’s signed tree heads
to encode batches of included certificates. The downside is that a non-deployed
signed tree head extension is assumed [56], as well as a tree head frequency
similar to those described by Nordberg et al. [72] to get efficiency in practise.

Paper IV uses a Mozilla Firefox web extension to verify embedded signed
certificate timestamps in Tor Browser. Such verification is similar to the
gradual deployments of Certificate Transparency in other browsers [97, 98],
and the starting point to improve upon in Papers II–III. Moreover, the use of
Certificate Transparency to associate human-meaningful domain names with
non-mnemonic onion addresses (as in Paper IV) is one of many proposals for
alternative naming systems and onion search solutions [48, 69, 73, 80, 88, 108].

7.2 Website Fingerprinting and Side-Channels
Several researchers outline how past website fingerprinting attacks have been
evaluated in unrealistic conditions [47, 76, 111]. This includes not accounting
for the size of the open-world setting, failing to keep false positive rates low
enough to be useful, assuming that homepages are browsed one at a time, how
to avoid dataset drift, and training classifiers on synthetic network traces. While
some of these challenges were addressed [15, 111], the question of how to deal
with false positives remains open. Papers V–VI make a significant dent in this
problem by providing evidence that the website fingerprinting attacker model
could be made stronger to capture realistic real-world capabilities that eliminate
most false positives around Alexa top-10k and the long tail of unpopular sites.

Others have evaluated traffic analysis attacks against Tor beyond the website
fingerprinting setting. On one side of the spectrum are end-to-end correla-
tion/confirmation attacks that typically consider a global passive attacker that
observes all network traffic [46, 71, 74, 83]. Such strong attackers are not

4Whether the third-party monitors in this study misbehaved or not can be questioned [4].
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within the scope of Tor [24]. On the other side of the spectrum are local attack-
ers that see a small fraction of the network, typically in a position to observe a
user’s encrypted entry traffic (Figure 2). Many have studied those weak attacks
in lab settings where, e.g., advances in deep learning improved the accuracy sig-
nificantly [63, 82, 90]. Others have focused on improved attacks that are active
in the Tor network from their own local vantage points [12, 68, 70], which
is similar to the techniques in Papers V–VI. Greschbach et al. show that an
attacker who gains access to (or traffic to [89]) commonly used DNS resolvers
like Google’s 8.8.8.8 get valuable information to improve both end-to-end
correlation and website fingerprinting attacks [35]. Paper V generalizes the
attacker capability they uncovered by allowing the attacker to query Tor’s
receiver anonymity set with a website oracle of time-frame t . It is further
shown that it is possible to instantiate such an abstraction in the real-world
while staying within Tor’s threat model. In other words, the attacker is still
local but may employ passive and active measures to narrow down the receiver
anonymity set. Paper III proposes Certificate Transparency verification that
gives log operators website oracle access. Tor’s directory authorities tune t .

Website oracles exist because Tor is designed for anonymity—not unob-
servable communication [78]. The instantiation of a real-world website oracle
is either a direct result of observing network flows from the protocols used
during website visits, or due to state of these network flows being stored and
inferable. Inferring secret system state is widely studied in applied cryptog-
raphy and hardware architecture [2, 32, 52, 62, 105, 107], where the goal is
usually to determine a key, decrypt a ciphertext, forge a message, or similar
using side-channels. A side-channel can be local or remote and ranges from
analysis of power consumption to cache states and timing differences. There
is a long history of remote timing attacks that are practical [9, 10, 20, 112].
A recent improvement in this area that is relevant for Tor is timeless timing
attacks, which exploit concurrency and message reordering to eliminate net-
work jitter [106]. Paper V demonstrates a remote timing attack against Tor’s
DNS cache that achieves up to 17.3% true positive rates while minimizing false
positives. Paper VI instead uses a remote timeless timing attack with no false
positives, no false negatives, and a small time-frame t . This approaches an ideal
website oracle without special attacker capabilities or reach into third-parties.

8 Conclusions and Future Work
Throughout the thesis, we contributed to the understanding of how trust
requirements in Certificate Transparency can be reduced. Efficient and reliable
monitoring of the logs is easily overlooked. If the broader ecosystem achieves
monitoring through third-parties, they should be subject to the same scrutiny
as logs. We proposed a solution that makes it hard for third-party monitors to
provide subscribers with selective certificate notifications. We also proposed
a gossip-audit model that plugs into interacting with the logs over DNS by
having programmable packet processors verify that the same append-only logs
are observed. Avoiding the addition of complicated verification logic into
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end-user software is likely a long-term win because it reduces the number of
moving parts. In other words, simple gossip-audit models will be much easier
to deploy in the wide variety of end-user software that embeds TLS clients.

We also contributed to the understanding of how Certificate Transparency
can be applied in the context of Tor Browser. Compared to a regular browser,
this results in a different setting with its own challenges and opportunities.
On the one hand, Tor Browser benefits from the ability to preserve privacy
due to using the anonymity network Tor. On the other hand, data relating
to website visits cannot be persisted to disk (such as signed certificate times-
tamps blocked by maximum merge delays). Our incrementally-deployable
proposal keeps the logic in Tor Browser simple by offloading all Certificate
Transparency verification to randomly selected Tor relays. The design is com-
plete because mis-issued certificates can eventually reach a trusted auditor who
acts on incidents. In addition to proposing Certificate Transparency in Tor
Browser, we also explored how certificates with onion addresses may improve
the association of domain names with onion addresses. Such certificates ensure
domain owners know which onion addresses can be discovered for their sites,
much like Certificate Transparency does the same thing for public TLS keys.
This also adds censorship resistance to the discovery as logs are append-only.

As part of exploring Certificate Transparency in Tor Browser, we further
contributed to the understanding of how the protocols used during website
visits affect unlinkability between Tor users and their destination websites. For
example, fetching an inclusion proof from a Certificate Transparency log is
one such protocol. We extended the attacker model of website fingerprinting
attacks with website oracles that reveal whether any network user visited a
website during a specific time frame. Our results show that website oracles
eliminate most false positives for all but the most frequently visited websites. In
addition to the theoretical evaluation of the extended attacker model, we could
exploit (timeless) timing attacks in Tor’s DNS cache to instantiate real-world
website oracles without any special capabilities or reach into third-parties. This
led us to contribute to the understanding of how Tor’s DNS cache performs
today, including a proposal for a performant alternative that preloads the same
popular domains on all Tor relays to withstand all (timeless) timing attacks.

As an outlook, our angle on Certificate Transparency verification has
mostly been reactive for end-users. In other words, some or all certificate
verification occurs asynchronously after a website visit. An alternative to
this would be upfront delivery of inclusion proofs that reconstruct tree heads
which witnesses cosigned; a form of proactive gossip as proposed by Syta et
al. [103]. The significant upside is that the browser’s verification could become
non-interactive, eliminating privacy concerns and ensuring end-users only see
certificates merged into the append-only logs. Investigating what the blockers
for such a proposal are in practice—today—would be valuable as log verification
quickly becomes complicated with signed certificate timestamps and reactive
gossip-audit models. Are these blockers significant? Are they significant over
time as other eventual changes will be needed, like post-quantum secure certifi-
cates? New transparency log applications are unlikely to need the complexity
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of Certificate Transparency, and should likely not copy something that was
designed to fit into an existing system with a large amount of legacy (such as
certificate authorities, their established processes for certificate issuance, and
the many client-server implementations already deployed on the Internet).

Orthogonal to the verification performed by end-users, contributing to
the understanding of how domains (fail to) use Certificate Transparency for
detecting mis-issued certificates is largely unexplored. For example, subscribing
to email notifications of newly issued certificates becomes less useful in an era
where certificates are renewed frequently and automatically. Instead, domain
owners need easy-to-use solutions that raise alarms only if there is a problem.

Finally, the mitigation deployed to counter our (timeless) timing attacks
in Tor’s DNS cache is just that: a mitigation, not a defense, that applies to
modestly popular websites but not the long tail where the base rate is low.
This is because the attacker’s needed website oracle time frame is so large that
a fuzzy time-to-live value does nothing. Practical aspects of a preloaded DNS
cache need to be explored further before deployment, such as the assumption
of a third-party that visits popular domains to assemble an allowlist. We may
also have underestimated the utility of the existing Umbrella list, which in and
of itself does not require any new third-party. Does the use of Umbrella impact
page-load latency? Latency is the most crucial parameter to keep minimized.
The question is whether frequently looked-up domains are missed or not by
skipping the website-visit step, as for the non-extended Alexa and Tranco lists.

More broadly, the question of how to strike a balance between efficiency and
effectiveness of website fingerprinting defenses is open. How much overhead
in terms of added latency and/or bandwidth is needed? How much of that
overhead is sustainable, both from a user perspective (where, e.g., latency is
crucial for web browsing and other interactive activities) and a network health
perspective (such as the amount of volunteered relay bandwidth that is wasted)?
It is paramount to neither overestimate nor underestimate attacker capabilities,
which goes back to the still-debated threat model of website fingerprinting
attacks. Regardless of if Tor’s DNS cache becomes preloaded or not, it will
be difficult to circumvent DNS lookups from happening. Someone—be it a
weak attacker like ourselves or a recursive DNS resolver at an Internet service
provider—is in a position to narrow down the destination anonymity set. This
is especially true when also considering other protocols that reveal information
about the destination anonymity set during website visits. Accepting that
sources of real-world website oracles are prevalent implies that the world can be
closed. Therefore, a closed world is more realistic than an open world.

Acknowledgments
I received valuable feedback while writing the introductory summary from
Simone Fischer-Hübner Johan Garcia, Stefan Lindskog, and Tobias Pulls. The
final draft was further improved with helpful nudges from Grammarly.



21

References
[1] Josh Aas, Richard Barnes, Benton Case, Zakir Durumeric, Peter Eckers-

ley, Alan Flores-López, J. Alex Halderman, Jacob Hoffman-Andrews,
James Kasten, Eric Rescorla, Seth D. Schoen, and Brad Warren. Let’s
Encrypt: An automated certificate authority to encrypt the entire web.
In CCS, 2019.

[2] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Break-
ing the TLS and DTLS record protocols. In IEEE S&P, 2013.

[3] Apple Inc. Apple’s Certificate Transparency policy. https://
support.apple.com/en-us/HT205280, accessed 2023-04-30.

[4] Andrew Ayer. Reliability of monitors | mitigations.
https://groups.google.com/a/chromium.org/g/ct-policy/
c/zCtQrn_7QK8, accessed 2023-04-30.

[5] Andrew Ayer. Retiring DigiCert log server (aka “CT1”) in
Chrome. https://groups.google.com/a/chromium.org/g/ct-
policy/c/P5aj4JEBFPM/m/9AEcvY01EQAJ, accessed 2023-04-30.

[6] Andrew Ayer. Trust Asia 2021 has produced inconsistent STHs.
https://groups.google.com/a/chromium.org/g/ct-policy/c/
VJaSg717m9g, accessed 2023-04-30.

[7] Vaibhav Bajpai, Anna Brunström, Anja Feldmann, Wolfgang Kellerer,
Aiko Pras, Henning Schulzrinne, Georgios Smaragdakis, Matthias Wäh-
lisch, and Klaus Wehrle. The dagstuhl beginners guide to reproducibility
for experimental networking research. CCR, 49(1), 2019.

[8] Henry Birge-Lee, Yixin Sun, Anne Edmundson, Jennifer Rexford, and
Prateek Mittal. Bamboozling certificate authorities with BGP. In
USENIX Security, 2018.

[9] Billy Bob Brumley and Nicola Tuveri. Remote timing attacks are still
practical. In ESORICS, 2011.

[10] David Brumley and Dan Boneh. Remote timing attacks are practical.
In USENIX Security, 2003.

[11] CA/Browser Forum. Baseline requirements for the issuance and man-
agement of publicly-trusted certificates. https://cabforum.org/
wp-content/uploads/CA-Browser-Forum-BR-1.8.7.pdf, accessed
2023-04-30.

[12] Sambuddho Chakravarty, Angelos Stavrou, and Angelos D. Keromytis.
Traffic analysis against low-latency anonymity networks using available
bandwidth estimation. In ESORICS, 2010.

https://support.apple.com/en-us/HT205280
https://support.apple.com/en-us/HT205280
https://groups.google.com/a/chromium.org/g/ct-policy/c/zCtQrn_7QK8
https://groups.google.com/a/chromium.org/g/ct-policy/c/zCtQrn_7QK8
https://groups.google.com/a/chromium.org/g/ct-policy/c/P5aj4JEBFPM/m/9AEcvY01EQAJ
https://groups.google.com/a/chromium.org/g/ct-policy/c/P5aj4JEBFPM/m/9AEcvY01EQAJ
https://groups.google.com/a/chromium.org/g/ct-policy/c/VJaSg717m9g
https://groups.google.com/a/chromium.org/g/ct-policy/c/VJaSg717m9g
https://cabforum.org/wp-content/uploads/CA-Browser-Forum-BR-1.8.7.pdf
https://cabforum.org/wp-content/uploads/CA-Browser-Forum-BR-1.8.7.pdf


22

[13] Melissa Chase and Sarah Meiklejohn. Transparency overlays and appli-
cations. In CCS, 2016.

[14] Heyning Cheng and Ron Avnur. Traffic analysis of SSL encrypted web
browsing. Project paper, University of Berkeley, 1998.

[15] Giovanni Cherubin, Rob Jansen, and Carmela Troncoso. Online web-
site fingerprinting: Evaluating website fingerprinting attacks on Tor in
the real world. In USENIX Security, 2022.

[16] Laurent Chuat, Pawel Szalachowski, Adrian Perrig, Ben Laurie, and
Eran Messeri. Efficient gossip protocols for verifying the consistency of
certificate logs. In CNS, 2015.

[17] Jeremy Clark and Paul C. van Oorschot. SoK: SSL and HTTPS: revisit-
ing past challenges and evaluating certificate trust model enhancements.
In IEEE S&P, 2013.

[18] Sigsum Project Contributors. Witness API v0. https:
//git.glasklar.is/sigsum/project/documentation/-/blob/
main/witness.md, accessed 2023-04-30.

[19] Scott A. Crosby and Dan S. Wallach. Efficient data structures for tamper-
evident logging. In USENIX Security, 2009.

[20] Scott A. Crosby, Dan S. Wallach, and Rudolf H. Riedi. Opportunities
and limits of remote timing attacks. ACM Trans. Inf. Syst. Secur., 12(3),
2009.

[21] Rasmus Dahlberg. Transparency log preliminaries. https:
//gitlab.torproject.org/rgdd/ct/-/blob/main/doc/tlog-
preliminaries.md, accessed 2023-04-30.

[22] Joe DeBlasio. Opt-out SCT auditing in Chrome. https:
//docs.google.com/document/d/16G-Q7iN3kB46GSW5b-
sfH5MO3nKSYyEb77YsM7TMZGE/edit, accessed 2023-04-30.

[23] Peter J Denning. Is computer science science? CACM, 48(4), 2005.

[24] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The
second-generation onion router. In USENIX Security, 2004.

[25] Alexandra Dirksen, David Klein, Robert Michael, Tilman Stehr, Kon-
rad Rieck, and Martin Johns. LogPicker: Strengthening Certificate
Transparency against covert adversaries. PETS, 2021(4).

[26] Gordana Dodig-Crnkovic. Scientific methods in computer science. In
Proceedings of the Conference for the Promotion of Research in IT at New
Universities and at University Colleges in Skövde, Sweden, 2002.

[27] Jason A. Donenfeld. Wireguard: Next generation kernel network tunnel.
In NDSS, 2017.

https://git.glasklar.is/sigsum/project/documentation/-/blob/main/witness.md
https://git.glasklar.is/sigsum/project/documentation/-/blob/main/witness.md
https://git.glasklar.is/sigsum/project/documentation/-/blob/main/witness.md
https://gitlab.torproject.org/rgdd/ct/-/blob/main/doc/tlog-preliminaries.md
https://gitlab.torproject.org/rgdd/ct/-/blob/main/doc/tlog-preliminaries.md
https://gitlab.torproject.org/rgdd/ct/-/blob/main/doc/tlog-preliminaries.md
https://docs.google.com/document/d/16G-Q7iN3kB46GSW5b-sfH5MO3nKSYyEb77YsM7TMZGE/edit
https://docs.google.com/document/d/16G-Q7iN3kB46GSW5b-sfH5MO3nKSYyEb77YsM7TMZGE/edit
https://docs.google.com/document/d/16G-Q7iN3kB46GSW5b-sfH5MO3nKSYyEb77YsM7TMZGE/edit


23

[28] Benjamin Dowling, Felix Günther, Udyani Herath, and Douglas Stebila.
Secure logging schemes and Certificate Transparency. In ESORICS,
2016.

[29] Graham Edgecombe. WoSign log failure to incorporate entry within
the MMD. https://groups.google.com/a/chromium.org/g/ct-
policy/c/-eV4Xe8toVk/m/pC5gSjJKCwAJ, accessed 2023-04-30.

[30] Adam Eijdenberg, Ben Laurie, and Al Cutter. Verifiable data
structures. https://github.com/google/trillian/blob/master/
docs/papers/VerifiableDataStructures.pdf, accessed 2023-04-
30.

[31] Saba Eskandarian, Eran Messeri, Joseph Bonneau, and Dan Boneh.
Certificate Transparency with privacy. PETS, 2017(4).

[32] Qian Ge, Yuval Yarom, David A. Cock, and Gernot Heiser. A survey
of microarchitectural timing attacks and countermeasures on contempo-
rary hardware. JCEN, 8(1), 2018.

[33] Google LLC. Certificate Transparency in Chrome. https:
//googlechrome.github.io/CertificateTransparency/
ct_policy.html, accessed 2023-04-30.

[34] Google LLC. The list of existing monitors. https://
certificate.transparency.dev/monitors/, accessed 2023-04-30.

[35] Benjamin Greschbach, Tobias Pulls, Laura M. Roberts, Phillip Winter,
and Nick Feamster. The effect of DNS on Tor’s anonymity. In NDSS,
2017.

[36] Lachlan J. Gunn, AndrewAllison, andDerekAbbott. Safety in numbers:
Anonymization makes keyservers trustworthy. In HotPETs, 2017.

[37] Paul Hadfield. Google Aviator incident under investigation.
https://groups.google.com/a/chromium.org/g/ct-policy/c/
ZZf3iryLgCo/m/mi-4ViMiCAAJ, accessed 2023-04-30.

[38] AlexandraHenzinger, MatthewM.Hong, HenryCorrigan-Gibbs, Sarah
Meiklejohn, and Vinod Vaikuntanathan. One server for the price of two:
Simple and fast single-server private information retrieval. In USENIX
Security, 2023.

[39] Cormac Herley and Paul C. van Oorschot. SoK: Science, security and
the elusive goal of security as a scientific pursuit. In IEEE S&P, 2017.

[40] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. Website
fingerprinting: attacking popular privacy enhancing technologies with
the multinomial naïve-bayes classifier. In CCSW, 2009.

https://groups.google.com/a/chromium.org/g/ct-policy/c/-eV4Xe8toVk/m/pC5gSjJKCwAJ
https://groups.google.com/a/chromium.org/g/ct-policy/c/-eV4Xe8toVk/m/pC5gSjJKCwAJ
https://github.com/google/trillian/blob/master/docs/papers/VerifiableDataStructures.pdf
https://github.com/google/trillian/blob/master/docs/papers/VerifiableDataStructures.pdf
https://googlechrome.github.io/CertificateTransparency/ct_policy.html
https://googlechrome.github.io/CertificateTransparency/ct_policy.html
https://googlechrome.github.io/CertificateTransparency/ct_policy.html
https://certificate.transparency.dev/monitors/
https://certificate.transparency.dev/monitors/
https://groups.google.com/a/chromium.org/g/ct-policy/c/ZZf3iryLgCo/m/mi-4ViMiCAAJ
https://groups.google.com/a/chromium.org/g/ct-policy/c/ZZf3iryLgCo/m/mi-4ViMiCAAJ


24

[41] Andrew Hintz. Fingerprinting websites using traffic analysis. In PETS,
2002.

[42] Benjamin Hof and Georg Carle. Software distribution transparency
and auditability. CoRR, abs/1711.07278, 2017.

[43] Paul Hoffman and Patrick McManus. DNS queries over HTTPS (DoH).
RFC 8484, IETF, 2018.

[44] Ralph Holz, Jens Hiller, Johanna Amann, Abbas Razaghpanah, Thomas
Jost, Narseo Vallina-Rodriguez, and Oliver Hohlfeld. Tracking the
deployment of TLS 1.3 on the web: a story of experimentation and
centralization. CCR, 50(3), 2020.

[45] Hans Hoogstraaten. Black tulip—report of the investigation into the
DigiNotar certificate authority breach. Technical report, Fox-IT, 2012.

[46] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul F.
Syverson. Users get routed: traffic correlation on Tor by realistic adver-
saries. In CCS, 2013.

[47] Marc Juárez, Sadia Afroz, Gunes Acar, Claudia Díaz, and Rachel Green-
stadt. A critical evaluation of website fingerprinting attacks. In CCS,
2014.

[48] George Kadianakis, Yawning Angel, and David Goulet. A name system
API for Tor onion services. https://gitlab.torproject.org/tpo/
core/torspec/-/blob/main/proposals/279-naming-layer-
api.txt, accessed 2023-04-30.

[49] Daniel Kales, Olamide Omolola, and Sebastian Ramacher. Revisiting
user privacy for Certificate Transparency. In IEEE EuroS&P, 2019.

[50] Neal Koblitz and Alfred Menezes. Another look at “provable security”.
J. Cryptol., 20(1), 2007.

[51] Neal Koblitz and Alfred Menezes. Another look at security definitions.
AMC, 7(1), 2013.

[52] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In CRYPTO, 1996.

[53] Ben Laurie. Certificate Transparency over DNS. https:
//github.com/google/certificate-transparency-rfcs/blob/
master/dns/draft-ct-over-dns.md, accessed 2023-04-30.

[54] Ben Laurie. Certificate Transparency. CACM, 57(10), 2014.

[55] Ben Laurie, Adam Langley, and Emilia Kasper. Certificate Transparency.
RFC 6962, IETF, 2013.

https://gitlab.torproject.org/tpo/core/torspec/-/blob/main/proposals/279-naming-layer-api.txt
https://gitlab.torproject.org/tpo/core/torspec/-/blob/main/proposals/279-naming-layer-api.txt
https://gitlab.torproject.org/tpo/core/torspec/-/blob/main/proposals/279-naming-layer-api.txt
https://github.com/google/certificate-transparency-rfcs/blob/master/dns/draft-ct-over-dns.md
https://github.com/google/certificate-transparency-rfcs/blob/master/dns/draft-ct-over-dns.md
https://github.com/google/certificate-transparency-rfcs/blob/master/dns/draft-ct-over-dns.md


25

[56] Ben Laurie, Eran Messeri, and Rob Stradling. Certificate Transparency
version 2.0. RFC 9162, IETF, 2021.

[57] Bingyu Li, Jingqiang Lin, Fengjun Li, Qiongxiao Wang, Qi Li, Jiwu
Jing, and Congli Wang. Certificate Transparency in the wild: Exploring
the reliability of monitors. In CCS, 2019.

[58] Marc Liberatore and BrianNeil Levine. Inferring the source of encrypted
HTTP connections. In CCS, 2006.

[59] Wouter Lueks and Ian Goldberg. Sublinear scaling for multi-client
private information retrieval. In FC, 2015.

[60] Harjasleen Malvai, Lefteris Kokoris-Kogias, Alberto Sonnino, Esha
Ghosh, Ercan Oztürk, Kevin Lewi, and Sean F. Lawlor. Parakeet:
Practical key transparency for end-to-end encrypted messaging. In
NDSS, 2023.

[61] Akshaya Mani, T. Wilson-Brown, Rob Jansen, Aaron Johnson, and
Micah Sherr. Understanding Tor usage with privacy-preserving mea-
surement. In IMC, 2018.

[62] Macarena C. Martínez-Rodríguez, Ignacio M. Delgado-Lozano, and
Billy Bob Brumley. SoK: Remote power analysis. In ARES, 2021.

[63] Nate Mathews, James K Holland, Se Eun Oh, Mohammad Saidur Rah-
man, Nicholas Hopper, and MatthewWright. SoK: A critical evaluation
of efficient website fingerprinting defenses. In IEEE S&P, 2023.

[64] Sarah Meiklejohn, Joe DeBlasio, Devon O’Brien, Chris Thompson,
Kevin Yeo, and Emily Stark. SoK: SCT auditing in Certificate Trans-
parency. PETS, 2022(3).

[65] Sarah Meiklejohn, Pavel Kalinnikov, Cindy S. Lin, Martin Hutchin-
son, Gary Belvin, Mariana Raykova, and Al Cutter. Think global,
act local: Gossip and client audits in verifiable data structures. CoRR,
abs/2011.04551, 2020.

[66] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Edward W. Fel-
ten, and Michael J. Freedman. CONIKS: bringing key transparency to
end users. In USENIX Security, 2015.

[67] Ralph C.Merkle. A digital signature based on a conventional encryption
function. In CRYPTO, 1987.

[68] Prateek Mittal, Ahmed Khurshid, Joshua Juen, Matthew Caesar, and
Nikita Borisov. Stealthy traffic analysis of low-latency anonymous
communication using throughput fingerprinting. In CCS, 2011.

[69] Alec Muffett. Real-world onion sites. https://github.com/
alecmuffett/real-world-onion-sites, accessed 2023-04-30.

https://github.com/alecmuffett/real-world-onion-sites
https://github.com/alecmuffett/real-world-onion-sites


26

[70] Steven J. Murdoch and George Danezis. Low-cost traffic analysis of Tor.
In IEEE S&P, 2005.

[71] Milad Nasr, Alireza Bahramali, and Amir Houmansadr. DeepCorr:
Strong flow correlation attacks on Tor using deep learning. In CCS,
2018.

[72] Linus Nordberg, Daniel Kahn Gillmor, and Tom Ritter. Gossiping in
CT. Internet-draft draft-ietf-trans-gossip-05, IETF, 2018.

[73] Juha Nurmi. Understanding the Usage of Anonymous Onion Services.
PhD thesis, Tampere University, Finland, 2019.

[74] Se Eun Oh, Taiji Yang, Nate Mathews, James K. Holland, Moham-
mad Saidur Rahman, Nicholas Hopper, and Matthew Wright. Deep-
CoFFEA: Improved flow correlation attacks on Tor via metric learning
and amplification. In IEEE S&P, 2022.

[75] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel.
Website fingerprinting in onion routing based anonymization networks.
In WPES, 2011.

[76] Mike Perry. A critique of website traffic fingerprinting attacks.
https://blog.torproject.org/critique-website-traffic-
fingerprinting-attacks, accessed 2023-04-30.

[77] Mike Perry, Erinn Clark, Steven Murdoch, and Georg Koppen. The
design and implementation of the Tor Browser [DRAFT]. https:
//2019.www.torproject.org/projects/torbrowser/design/, ac-
cessed 2023-04-30.

[78] Andreas Pfitzmann and Marit Hansen. A terminology for talking about
privacy by data minimization: Anonymity, unlinkability, undetectabil-
ity, unobservability, pseudonymity, and identity management, 2010.

[79] Tor Project. Browse privately. Explore freely. Defend yourself
against tracking and surveillance. Circumvent censorship. https:
//www.torproject.org/, accessed 2022-04-30.

[80] Tor Project. Onion-Location. https://community.torproject.org/
onion-services/advanced/onion-location/, accessed 2023-04-
30.

[81] Tor Project. Research safety board. https://
research.torproject.org/safetyboard/, accessed 2023-04-30.

[82] Mohammad Saidur Rahman, Payap Sirinam, Nate Mathews, Kan-
tha Girish Gangadhara, and Matthew Wright. Tik-Tok: The utility
of packet timing in website fingerprinting attacks. PETS, 2020(3).

https://blog.torproject.org/critique-website-traffic-fingerprinting-attacks
https://blog.torproject.org/critique-website-traffic-fingerprinting-attacks
https://2019.www.torproject.org/projects/torbrowser/design/
https://2019.www.torproject.org/projects/torbrowser/design/
https://www.torproject.org/
https://www.torproject.org/
https://community.torproject.org/onion-services/advanced/onion-location/
https://community.torproject.org/onion-services/advanced/onion-location/
https://research.torproject.org/safetyboard/
https://research.torproject.org/safetyboard/


27

[83] Vera Rimmer, Theodor Schnitzler, Tom van Goethem, Abel Rodríguez
Romero, Wouter Joosen, and Katharina Kohls. Trace oddity: Method-
ologies for data-driven traffic analysis on Tor. PETS, 2022(3).

[84] Jeremy Rowley. CT2 log compromised via Salt vulnerability.
https://groups.google.com/a/chromium.org/forum/#!topic/
ct-policy/aKNbZuJzwfM, accessed 2023-04-30.

[85] Stefan Santesson, Michael Myers, Rich Ankney, Ambarish Malpani,
Slava Galperin, and Carlisle Adams. X.509 Internet public key infras-
tructure online certificate status protocol—OCSP. RFC 6960, IETF,
2013.

[86] Sectigo Limited. crt.sh: certificate search. https://github.com/
crtsh, accessed 2023-04-30.

[87] Sectigo Limited. crt.sh: certificate search ID = ’8913351873’. https:
//crt.sh/?id=8913351873, accessed 2023-04-30.

[88] SecureDrop. Getting an onion name for your SecureDrop. https://
securedrop.org/faq/getting-onion-name-your-securedrop/,
accessed 2023-04-30.

[89] Sandra Siby, Marc Juárez, Claudia Díaz, Narseo Vallina-Rodriguez, and
Carmela Troncoso. Encrypted DNS -> privacy? A traffic analysis
perspective. In NDSS, 2020.

[90] Payap Sirinam, Mohsen Imani, Marc Juárez, and MatthewWright. Deep
fingerprinting: Undermining website fingerprinting defenses with deep
learning. In CCS, 2018.

[91] Ryan Sleevi. StartCom log misbehaving: Failure to incorpo-
rate SCTs. https://groups.google.com/a/chromium.org/g/ct-
policy/c/92HIh2vG6GA/m/hBEHxcpoCgAJ, accessed 2023-04-30.

[92] Ryan Sleevi. Upcoming CT log removal: Izenpe. https:
//groups.google.com/a/chromium.org/forum/#!topic/ct-
policy/qOorKuhL1vA, accessed 2023-04-30.

[93] Ryan Sleevi. Upcoming log removal: Venafi CT log server.
https://groups.google.com/a/chromium.org/forum/#!topic/
ct-policy/KMAcNT3asTQ, accessed 2023-04-30.

[94] Ryan Sleevi and Eran Messeri. Certificate Transparency in Chrome:
Monitoring CT logs consistency. https://docs.google.com/
document/d/1FP5J5Sfsg0OR9P4YT0q1dM02iavhi8ix1mZlZe_z-
ls/edit?pref=2&pli=1, accessed 2023-04-30.

[95] SSLMate Inc. Cert spotter—Certificate Transparency monitor. https:
//github.com/SSLMate/certspotter, accessed 2023-04-30.

https://groups.google.com/a/chromium.org/forum/#!topic/ct-policy/aKNbZuJzwfM
https://groups.google.com/a/chromium.org/forum/#!topic/ct-policy/aKNbZuJzwfM
https://github.com/crtsh
https://github.com/crtsh
https://crt.sh/?id=8913351873
https://crt.sh/?id=8913351873
https://securedrop.org/faq/getting-onion-name-your-securedrop/
https://securedrop.org/faq/getting-onion-name-your-securedrop/
https://groups.google.com/a/chromium.org/g/ct-policy/c/92HIh2vG6GA/m/hBEHxcpoCgAJ
https://groups.google.com/a/chromium.org/g/ct-policy/c/92HIh2vG6GA/m/hBEHxcpoCgAJ
https://groups.google.com/a/chromium.org/forum/#!topic/ct-policy/qOorKuhL1vA
https://groups.google.com/a/chromium.org/forum/#!topic/ct-policy/qOorKuhL1vA
https://groups.google.com/a/chromium.org/forum/#!topic/ct-policy/qOorKuhL1vA
https://groups.google.com/a/chromium.org/forum/#!topic/ct-policy/KMAcNT3asTQ
https://groups.google.com/a/chromium.org/forum/#!topic/ct-policy/KMAcNT3asTQ
https://docs.google.com/document/d/1FP5J5Sfsg0OR9P4YT0q1dM02iavhi8ix1mZlZe_z-ls/edit?pref=2&pli=1
https://docs.google.com/document/d/1FP5J5Sfsg0OR9P4YT0q1dM02iavhi8ix1mZlZe_z-ls/edit?pref=2&pli=1
https://docs.google.com/document/d/1FP5J5Sfsg0OR9P4YT0q1dM02iavhi8ix1mZlZe_z-ls/edit?pref=2&pli=1
https://github.com/SSLMate/certspotter
https://github.com/SSLMate/certspotter


28

[96] SSLMate Inc. Timeline of certificate authority failures. https://
sslmate.com/resources/certificate_authority_failures, ac-
cessed 2023-04-30.

[97] Emily Stark, Joe DeBlasio, Devon O’Brien, Davide Balzarotti, William
Enck, Samuel King, and Angelos Stavrou. Certificate Transparency in
Google Chrome: Past, present, and future. IEEE S&P, 19(6), 2021.

[98] Emily Stark, Ryan Sleevi, Rijad Muminovic, Devon O’Brien, Eran
Messeri, Adrienne Porter Felt, Brendan McMillion, and Parisa Tabriz.
Does Certificate Transparency break the web? Measuring adoption and
error rate. In IEEE S&P, 2019.

[99] Emily Stark and Chris Thompson. Opt-in SCT audit-
ing. https://docs.google.com/document/d/1G1Jy8LJgSqJ-
B673GnTYIG4b7XRw2ZLtvvSlrqFcl4A/edit, accessed 2023-04-30.

[100] Nick Sullivan. Understanding use-cases for SCTs delivered via
OCSP stapling for TLS extension. https://groups.google.com/a/
chromium.org/g/ct-policy/c/WX6iZt7uJBs, accessed 2023-04-30.

[101] Nick Sullivan and Sean Turner. Messaging layer security: Secure
and usable end-to-end encryption. https://www.ietf.org/blog/mls-
secure-and-usable-end-to-end-encryption/, accessed 2023-04-
30.

[102] Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Russell, Venkata N.
Padmanabhan, and Lili Qiu. Statistical identification of encrypted web
browsing traffic. In IEEE S&P, 2002.

[103] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp
Jovanovic, Linus Gasser, Nicolas Gailly, Ismail Khoffi, and Bryan Ford.
Keeping authorities "honest or bust" with decentralized witness cosign-
ing. In IEEE S&P, 2016.

[104] Alin Tomescu, Vivek Bhupatiraju, Dimitrios Papadopoulos, Charalam-
pos Papamanthou, Nikos Triandopoulos, and Srinivas Devadas. Trans-
parency logs via append-only authenticated dictionaries. In CCS, 2019.

[105] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and
Hiroshi Miyauchi. Cryptanalysis of DES implemented on computers
with cache. In CHES, 2003.

[106] Tom van Goethem, Christina Pöpper, Wouter Joosen, and Mathy Van-
hoef. Timeless timing attacks: Exploiting concurrency to leak secrets
over remote connections. In USENIX Security, 2020.

[107] Mathy Vanhoef and Tom Van Goethem. HEIST: HTTP encrypted
information can be stolen through TCP-windows. In Black Hat US
Briefings, 2016.

https://sslmate.com/resources/certificate_authority_failures
https://sslmate.com/resources/certificate_authority_failures
https://docs.google.com/document/d/1G1Jy8LJgSqJ-B673GnTYIG4b7XRw2ZLtvvSlrqFcl4A/edit
https://docs.google.com/document/d/1G1Jy8LJgSqJ-B673GnTYIG4b7XRw2ZLtvvSlrqFcl4A/edit
https://groups.google.com/a/chromium.org/g/ct-policy/c/WX6iZt7uJBs
https://groups.google.com/a/chromium.org/g/ct-policy/c/WX6iZt7uJBs
https://www.ietf.org/blog/mls-secure-and-usable-end-to-end-encryption/
https://www.ietf.org/blog/mls-secure-and-usable-end-to-end-encryption/


29

[108] Jesse Victors, Ming Li, and Xinwen Fu. The onion name system. PETS,
2017(1).

[109] Emanuel von Zezschwitz, Serena Chen, and Emily Stark. “It builds
trust with the customers”—exploring user perceptions of the padlock
icon in browser UI. In IEEE SPW, 2022.

[110] Jun Wang, Weinan Zhang, and Shuai Yuan. Display advertising with
real-time bidding (RTB) and behavioural targeting. Foundations and
Trends in Information Retrieval, 2017.

[111] TaoWang and Ian Goldberg. On realistically attacking Tor with website
fingerprinting. PETS, 2016(4).

[112] Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav
Shacham, ChristopherW. Fletcher, and David Kohlbrenner. Hertzbleed:
Turning power side-channel attacks into remote timing attacks on x86.
In USENIX Security, 2022.

[113] Philipp Winter, Richard Köwer, Martin Mulazzani, Markus Huber,
Sebastian Schrittwieser, Stefan Lindskog, and Edgar R. Weippl. Spoiled
onions: Exposing malicious Tor exit relays. In PETS, 2014.

[114] Zerodium. We pay big bounties. https://zerodium.com/, accessed
2023-04-30.

https://zerodium.com/




IPaper

Reprinted from

Verifiable Light-Weight Monitoring
for Certificate Transparency Logs

NordSec (2018)





Verifiable Light-Weight Monitoring for Certificate
Transparency Logs

Rasmus Dahlberg and Tobias Pulls

Abstract

Trust in publicly verifiable Certificate Transparency (CT) logs is reduced
through cryptography, gossip, auditing, and monitoring. The role of a
monitor is to observe each and every log entry, looking for suspicious
certificates that interest the entity running the monitor. While anyone
can run a monitor, it requires continuous operation and copies of the
logs to be inspected. This has lead to the emergence of monitoring as-a-
service: a trusted third-party runs the monitor and provides registered
subjects with selective certificate notifications. We present a CT/bis
extension for verifiable light-weight monitoring that enables subjects to
verify the correctness of such certificate notifications, making it easier to
distribute and reduce the trust which is otherwise placed in these monitors.
Our extension supports verifiable monitoring of wild-card domains and
piggybacks on CT’s existing gossip-audit security model.

1 Introduction
Certificate Transparency (CT) [18] is an experimental standard that enhances
the public-key infrastructure by adding transparency for certificates that are
issued by Certificate Authorities (CAs). The idea is to mandate that every
certificate must be publicly logged in an append-only tamper-evident data
structure [4], such that anyone can observe what has been issued for whom.
This means that a subject can determine for herself if anything is mis-issued
by downloading all certificates; so called self-monitoring. An alternative moni-
toring approach is to rely on a trusted third-party that notifies the subject if
relevant certificates are ever found. Given that self-monitoring involves set-up,
continuous operation, and exhaustive communication effort, the concept of
subscribing for monitoring as-a-service is simpler for the subject. This model
is already prevalent in the wild, and is provided both by CAs and industry
vendors—see for example SSLMate’s Cert Spotter [26] or Facebook’s moni-
toring tool [14]. Third-party monitors can also offer related services, such as
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searching for certificates interactively or inspecting other log properties. The
former is provided by Facebook and Comodo’s crt.sh; the latter by Graham
Edgecombe’s CT monitoring tool [9].

It would be an unfortunate short-coming if CT did not change the status
quo of centralized trust by forcing subjects who cannot operate a self-monitor
to trust certificate notifications that are provided by a third-party monitor.
While it is true that a subject could subscribe to a large number of monitors to
reduce this trust, it is overall cumbersome and does not scale well beyond a
handful of notifying monitors (should they exist). To this end, we suggest a
CT/bis extension for verifiable Light-Weight Monitoring (LWM) that makes it
easier to distribute the trust which is otherwise placed in these monitors by
decoupling the notifier from the full-audit function of inspecting all certificates.
Our idea is best described in terms of a self-monitor that polls for new updates,
but as opposed to processing all certificates we can filter on wild-card prefixes
such as *.example.com in a verifiable manner. LWM relies on the ability to
define a new Signed Tree Head (STH) extension, and thus a CT/bis compliant
log is necessary [19]. At the time of writing CT/bis have yet to be published as
an IETF standard. We are not aware of any log that deploys a drafted version.

As a brief overview, each batch of newly included certificates are grouped as
a static Merkle tree in LWM. The resulting snapshot (also know as a fingerprint
or a root hash) is then incorporated into the corresponding STH as an extension.
An LWM subject receives one verifiable certificate notification per log update
from an untrusted notifier (who could be the log, a monitor, or anyone else),
and this notification is based on the smaller static Merkle tree rather than
the complete log. This is because monitoring as-a-service is mainly about
identifying newly included certificates. Moreover, we can order each static
Merkle tree so that verifiable wild-card filtering is possible. For security we rely
on at least one entity to verify that each snapshot is correct—which is a general
monitoring function that is independent of the subjects using LWM—as well as
a gossip protocol that detects split-views [3]. Since our extension is part of an
STH, we piggyback on any gossip-like protocol that deals with the exchange
and/or distribution of (verified) STHs [6, 23, 25, 28]. Our contributions are
as follows:

• The design of a backwards-compatible CT/bis extension for light-weight
monitoring of wild-card prefixes such as *.example.com (Section 3).

• A security sketch showing that an attacker cannot omit a certificate
notification without being detected, relying on standard cryptographic
assumptions and piggybacking on the proposed gossip-audit models of
CT (Section 4.1).

• An open-source proof-of-concept implementation written in Go, as
well as a performance evaluation that considers computation time and
bandwidth requirements (Section 4.2). In particular we find that the
overhead during tree head construction is small in comparison to a sound
STH frequency of one hour; a notifier can easily notify 288 M subjects in
a verifiable manner for Google’s Icarus log on a single core and a 1 Gbps
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r ← H(ℎab ∥ℎcd )

ℎcd ← H(ℎc ∥ℎd )

ℎd ← H(d)ℎc ← H(c)

ℎab ← H(ℎa ∥ℎb )

ℎb ← H(b)ℎa ← H(a)

Figure 1: Merkle tree containing four values a–d . The dashed arrows show the
traversal used to generate an audit path for the right-most leaf (dashed nodes).

connection; and a subject receives about 24 Kb of proofs per day and
log which is verified in negligible time (the order of µs for the common
case of non-membership, and seconds in the extreme case of verifying
membership for an entire top-level domain).

Background on Merkle trees and CT is provided in Section 2. Related work
is discussed in Section 4.3. Conclusions are presented in Section 5.

2 Background
Suppose that a trusted content provider would like to outsource its operation
to an untrusted third-party. This is often referred to as the three-party setting,
in which a trusted source maintains an authenticated data structure through
a responder that answers client queries on the source’s behalf [29]. The data
structure is authenticated in the sense that every answer is accompanied by
a cryptographic proof that can be verified for correctness by only trusting
the source. While there are many settings and flavors of authenticated data
structures [4, 5, 7], our scope is narrowed down to CT which builds upon
Merkle trees.

2.1 Merkle Trees
The seminal work by Merkle [21] proposed a static binary tree where each leaf
stores the hash of a value and every interior node hashes its children (Figure 1).
The root hash serves as a succinct snapshot of the tree’s structure and content,
and by revealing a logarithmic number of hashes it can be reconstructed to
prove whether a value is stored in a leaf. These hashes compose an audit path
for a value, and it is obtained by taking every sibling hash while traversing the
tree from the root down towards the leaf being authenticated. An audit path is
verified by reversing the traversal used during generation, first reconstructing
the leaf hash and then every interior node recursively (using the provided
sibling hashes) until finally reaching the root. Given a collision resistant
hash function, an audit path proves that a given leaf contains a value iff the
reconstructed root hash is known to be authentic. For example, the trusted
source might sign it.
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While non-membership of a value can be proven by providing the entire
data structure, this is generally too inefficient since it requires linear space and
time. A better approach is to structure the tree such that the node which should
contain a value is known if it exists. This property is often discussed in relation
to certificate revocation: as opposed to downloading a list of serial numbers
that represent the set of revoked certificates, each leaf in a static Merkle tree
could (for example) contain an interval [a, b) where a is revoked and the open
interval (a, b) current [17]. Given a serial number x , an audit path can be
generated in logarithmic space and time for the leaf where x ∈ [a, b) to prove
(non-)membership. Similar constructions that are dynamic support updates
more efficiently [5, 11, 20].

2.2 Certificate Transparency
The CA ecosystem involves hundreds of trusted third-parties that issue TLS
certificates [8]. Once in a while somebody gets this process wrong, and as a
result a fraudulent identity-to-key binding may be issued for any subject [12]. It
is important to detect such incidents because mis-issued certificates can be used
to intercept TLS connections. However, detection is hard unless the subjects
who can distinguish between anything benign and fraudulent get a concise view
of the certificates that are being served to the clients. By requiring that every
CA-issued certificate must be disclosed in a public and append-only log, CT
layers on-top of the error-prone CA ecosystem to provide such a view: in
theory anyone can inspect a log and determine for herself if a certificate is
mis-issued [18].

It would be counter-intuitive to ‘solve’ blind trust in CAs by suggesting
that everybody should trust a log. Therefore, CT is designed such that the log
can be distrusted based on two components: a dynamic append-only Merkle
tree that supports verifiable membership and consistency queries [4], as well
as a gossip protocol that detects split-views [3, 23]. We already introduced
the principles of membership proofs in Section 2.1, and consistency proofs
are similar in that a logarithmic number of hashes are revealed to prove two
snapshots consistent. In other words, anyone can verify that a certificate is
included in the log without fully downloading it, and whatever was in the
log before still remains unmodified. Unlike the three-party setting, gossip is
needed because there is no trusted source that signs-off the authenticated data
structure: consistency and inclusion proofs have limited value if everybody
observes different (but valid) versions of the log.

Terminology, Policy Parameters, and Status Quo

A new STH—recall that this is short for Signed Tree Head—is issued by the
log at least every Maximum Merge Delay (MMD) and no faster than allowed
by an STH frequency [19]. An MMD is the longest time until a certificate
must be included in the log after promising to include it. This promise is
referred to as a Signed Certificate Timestamp (SCT). An STH frequency is
relative to the MMD, and limits the number of STHs that can be issued. These



Verifiable Light-Weight Monitoring for Certificate Transparency Logs 37

parameters (among others) are defined in a log’s policy, and if a violation
is detected there are non-repudiable proofs of log misbehavior that can be
presented. For example, show an SCT that is not included after an MMD, too
many STHs during the period of an MMD, or two STHs that are part of two
inconsistent versions of the log. In other words, rather than being a trusted
source a log signs statements to be held accountable.

Ideally we would have all of these components in place at once: anyone
that interacts with a log audits it for correctness based on partial information
(SCTs, STHs, served certificates, and proofs), subjects monitor the logs for
newly included certificates to check that they are free from mis-issuance (full
download), and a gossip protocol detects or deters logs from presenting split-
views. This is not the case in practice, mainly because CT is being deployed
incrementally [25] but also because the cost and complexity of self-monitoring
is relatively high. For example, a subject that wants rapid detection of mis-
issuance needs continuous operation and full downloads of the logs. It appears
that the barrier towards self-monitoring have lead to the emergence of moni-
toring as-a-service, where a trusted third-party monitors the logs on a subject’s
behalf by selectively notifying her of relevant certificates, e.g., mail the operator
of example.com if ∗.example.com certificates are ever found. Third-party mon-
itoring is convenient for logs too because it reduces the bandwidth required to
serve many subjects. However, for CT it is an unintuitive concept given that it
requires blind trust.

3 Light-Weight Monitoring
To reduce the trust which is placed in today’s third-party monitors, the idea of
LWM is to lower the barrier towards self-monitoring. As shown in Figure 2, an
untrusted notifier provides a subject with efficient1 certificate notifications that
can be cryptographically verified: each batch of certificates is represented by
an additional Merkle tree that supports wild-card (non-)membership queries
(described further in Section 3.1), and the resulting snapshot is signed by the
log as part of an STH extension. As such, a subject can deal only with those
certificates that are relevant, relying on wild-card proofs to verify correctness
and completeness: said certificates are included and nothing is being omitted.
Anyone can check that an LWM snapshot is correct by inspecting the corre-
sponding batch of certificates. Notably this is a general monitoring function,
rather than a selective notification component which is verifiable in LWM. This
decoupling allows anyone to be a notifier, including logs and monitors that a
subject distrust.

3.1 Authenticated Wild-Card Queries
Thus far we only discussed Merkle trees in terms of verifying whether a single
value is a (non-)member: membership is proven by presenting an audit path

1Efficient iff less than a linear number of log entries are received per log update.
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Log

Subject

NotifierMonitor

STH with snapshot extension

verify STH extension

verify notification

optional verifybatch, STH

notification

batch, STH

Figure 2: An overview of LWM. In addition to normal operation, a log creates
an additional (smaller) Merkle tree that supports wild-card (non-)membership
queries. The resulting snapshot is signed as part of an STH extension that can
be verified by any monitor that downloads the corresponding batch. A subject
receives one verifiable certificate notification per STH from an untrusted
notifier.

r ← H(ℎ01∥ℎ23)

ℎ23 ← H(ℎ2∥ℎ3)
ℎ3 ← H(ten.elpmaxe)

ℎ2 ← H(moc.elpmaxe.bus)

ℎ01 ← H(ℎ0∥ℎ1)
ℎ1 ← H(moc.elpmaxe)

ℎ0 ← H(gro.elpmaxe)

Figure 3: Merkle tree where the leaves are ordered on reversed subject names.

down to the leaf in question, while non-membership requires a lexicographical
ordering that allows a verifier to conclude that a value is absent unless provided
in a particular location. The latter concept naturally extends to prefix wild-card
queries—such as ∗.example.com and ∗.sub.example.com—by finding a suitable
ordering function Ω which ensures that related leaves are grouped together as a
consecutive range. We found that this requirement is satisfied by sorting on re-
versed subject names: suppose that we have a batch of certificates example.com,
example.org, example.net, and sub.example.com. After applying Ω we get the
static Merkle tree in Figure 3. A prefix wild-card proof is constructed by
finding the relevant range in question, generating an audit path for the leaves
that are right outside of the range [24]. Such a proof is verified by checking
that (i) Ω indicates that the left (right) end is less (larger) than the queried
prefix, (ii) the leaves are ordered as dictated by Ω, and (iii) the recomputed
root hash is valid.

The exact details of reconstructing the root hash is a bit tedious because
there are several corner cases. For example, either or both of the two audit
paths may be empty depending on batch size (≤1) and location of the relevant
range (left/right-most side). Therefore, we omit the details and focus on the
concept: given two audit paths and a sequence of data items ordered by Ω that
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includes the left leaf, matching range, and right leaf, repeatedly reconstruct
interior nodes to the largest extent possible and then use the sibling hash
which is furthest from the root to continue. For example, consider a proof for
∗sub.example.com in Figure 3: it is composed of (i) the left leaf data and its
audit path ℎ0, ℎ23 on index 1, (ii) the right leaf data and its audit path ℎ2, ℎ01
on index 3, and (iii) the matching range itself which is a single certificate.
After verifying Ω order, recompute the root hash r ′ and check if it matches an
authentic root r as follows:

1. Compute leaf hashes ℎ′1, ℎ
′
2, and ℎ′3 from the provided data. Next, com-

pute the interior node ℎ′23 ← H(ℎ′2∥ℎ
′
3). Because no additional interior

node can be computed without a sibling hash, consider ℎ0 in the left
audit path.

2. Compute the interior node ℎ′01 ← H(ℎ0∥ℎ′1), then r ′ ← H(ℎ′01∥ℎ
′
23).

2

Given an Ω ordered list of certificates it is trivial to locate where a subject’s
wild-card matches are: binary search to find the index of an exact match (if
any), then up to t matches follow in order. This is not the only way to find
the right range and matches. For example, a radix tree could be used with the
main difference being O

(
t + log n

)
against O

(
t + k

)
complexity for a batch of

size n, a wild-card string of length k, and t matches. Since the complexity of
generating two audit paths is O

(
log n

)
for any number of matches, the final

space and time complexity for a wild-card structure based on an ordered list is
O
(
t + log n

)
.

3.2 Notifier
A notifier must obtain every STH to generate wild-card proofs that can be
traced back to the log. Albeit error-prone in case of network issues, the simplest
way to go about this is to poll the log’s get-STH endpoint frequently enough.3
Once an updated is spotted every new certificate is downloaded and the wild-
card structure is reconstructed. A subject receives her verifiable certificate
notifications from the notifier via a push (‘monitoring as-a-service’) or pull
(‘self-monitoring’) model. For example, emails could be delivered after every
update or in daily digests. Another option is to support queries like “what’s
new since STH x”.

A subject can verify that a certificate notification is fresh by inspecting the
STH timestamp. However, it is hard to detect missing certificate notifications
unless every STH trivially follows from the previous one. While there are
several methods to achieve this—for example using indices (Section 3.3) or hash
chains [20]—the log must always sign a snapshot per STH using an extension.

2Two audit paths may contain redundancy, but we ignored this favouring simplicity.
3It would be better if logs supported verifiable and historical get-STH queries.
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3.3 Instantiation Example
Instantiating LWM depends upon the ability to support an STH extension.
In the latest version of CT, this takes the form of a sorted list of key-value
pairs where the key is unique and the value an opaque byte array [19]. We
could reserve the keywords lwm for snapshots and index for monotonically
increasing counters.4 Besides an LWM-compliant log, an untrusted notifier
must support pushed or pulled certificate notifications that are verifiable by
tracking the most recent or every wild-card structure. Examples of likely
notifiers include logs (who benefit from the reduced bandwidth) and monitors
(who could market increased transparency) that already process all certificates
regardless of LWM.

4 Evaluation
First we discuss assumptions and sketch on relevant security properties for
LWM. Next, we examine performance properties of our open-source proof-of-
concept implementation experimentally and reason about bandwidth overhead
in theory. Finally, we present differences and similarities between LWM and
related work.

4.1 Assumptions and Security Notions
The primary threat is a computationally bound attacker that attempts to forge
or omit a certificate notification without being detected. We rely on standard
cryptographic assumptions, namely an unforgeable digital signature scheme
and a collision resistant hash function H with 2λ-bit output for a security
parameter λ. The former means that an LWM snapshot must originate from
the (untrusted) log in question. While an incorrect snapshot could be created
intentionally to hide a mis-issued certificate, it would be detected if at least one
honest monitor exists because our STH extension piggybacks on the gossip-
audit model of CT (that we assume is secure).5 A subject can further detect
missing notifications by checking the STH index for monotonic increases and
the STH timestamp for freshness. Thus, given secure audit paths and correct
verification checks as described in Section 3.1, no certificate notification can
be forged or omitted. Our cryptographic assumptions ensure that every leaf is
fixed by a secure audit path as in CT, i.e., a leaf hash with value v is encoded as
H(0x00∥v ) and an interior hash with children L,R as H(0x01∥L∥R) [4, 18].
To exclude any unnecessary data on the ends of a range, the value v is a subject
name concatenated with a hashed list of associated certificates in LWM (subject
names suffice to verify Ω order).

4Instead of an index to detect missing notifications (STHs), a log could announce STHs as part
of a verifiable get-STH endpoint. See the sketch of Nordberg [22].

5Suppose that witness cosigning is used [28]. Then we rely on at least one witness to verify
our extension. Or, suppose that STH pollination is used [23]. Then we rely on the most recent
window of STHs to reach a monitor that verifies our extension.
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CT makes no attempt to offer security in the multi-instance setting [15].
Here, an attacker that targets many different Merkle trees in parallel should
gain no advantage while trying to forge any valid (non-)membership proof.
By design there will be many different wild-card Merkle trees in LWM, and
so the (strictly stronger) multi-instance setting is reasonable. We can provide
full bit-security in this setting by ensuring that no node’s pre-image is valid
across different trees by incorporating a unique tree-wide constant ct in leaf
and empty hashes per batch, e.g., ct ←$ {0, 1}λ . Melera et al. [20] describe this
in detail while also ensuring that no node’s pre-image is valid across different
locations within a Merkle tree.

In an ecosystem where CT is being deployed incrementally without gossip,
the benefit of LWM is that a subject who subscribes for certificate notifications
can trust the log only (as opposed to also trusting the notifier). Therefore,
today’s trust in third-party monitoring services can be reduced significantly. A
log must also present a split-view or an invalid snapshot to deceive a subject
with false notifications. As such, subjects accumulate binding evidence of log
misbehavior that can be audited sometime in the future if suspicion towards
a log is raised. Long-term the benefit of LWM is that it is easier to distribute
the trust which is placed in third-party monitors, i.e., anyone who processes
a (small in comparison to the entire log) batch of certificates can full-audit it
without being a notifier.

4.2 Implementation and Performance
We implemented multi-instance secure LWM in less than 400 lines of Go [1].
Our wild-card structure uses an existing implementation of a radix tree to
find leaf indices and data. To minimize proof-generation times, all hashes are
cached in an in-memory Merkle tree which uses SHA-256. We benchmarked
snapshot creation, proof generation, and proof verification times on a single
core as the batch size increases from 1024–689,245 certificates using Go’s built-
in benchmarking tool, an Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz, and
2x8 Gb DDR3 RAM. We assumed real subject names from Alexa’s top-1M [2].
and average-sized certificates of 1500 bytes [10], where a batch of n subject
names refers to the n most popular domains. Notably 689,245 certificates is
the largest batch observed by us in Google’s Icarus log between 2017-01-25
and 2018-08-05, corresponding to an STH interarrival time of 27.1 hours. The
median (average) batch size and STH interarrival time were 22818 (23751)
certificates and 60.1 (61.6) minutes. Only two batches were larger than 132077
certificates. Considering that Icarus is one of the logs that see largest loads [27],
we can make non-optimistic conclusions regarding the performance overhead
of LWM without inspecting other logs.

Figure 4 shows snapshot creation time as a function of batch size. Nearby
the median (215 ) it takes 0.39 seconds to create a snapshot from scratch, initial-
izing state from an unordered dictionary and caching all hashes for the first
time. For the largest batch, the snapshot creation time is roughly 10 seconds.
Arguably this overhead is still insignificant for logs, monitors, and notifiers
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Figure 4: Snapshot creation time as a function of batch size.
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Figure 5: Membership and non-membership proof query time as a function of
batch size for a single and no match, respectively.

because the associated STH interarrival times are orders of magnitude larger.
Figure 5 shows proof generation time as a function of batch size while

querying for the longest wild-card prefix with a single match (membership), as
well as another wild-card prefix without any match in com’s top-level domain
(non-membership). There is little or no difference between the generation time
for these types of wild-card proofs, and nearby the median it takes around 7 µs .
For the largest batch, this increased to 12.5 µs . A notifier can thus generate 288
million non-membership notifications per hour on a single core. Verification is
also in the order of µs , which should be negligible for a subject (see Figure 6).

To evaluate the cost of generating and verifying a wild-card notification
with a large number of matches, we queried for com’s entire top-level domain
(see Figure 7). In the largest batch where there are 352,383 matches, the proof
generation time is still relatively low: 134 ms. This corresponds to 28.9k
notifications per hour on a single core. The verification time is much larger:
3.5 seconds. This is expected since verification involves reconstructing the root
from all the matching leaves, which is at least as costly as creating a snapshot
of the same size (cf. 218 in Figure 4). While these are relevant performance
numbers, anyone who is interested in a top-level domain would likely just
download the entire batch.
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Figure 6: Membership and non-membership verification time as a function of
batch size for a single and no match, respectively.
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Figure 7: Membership query and verification time for ∗.com.

Finally, the space overhead of a verifiable wild-card notification is dominated
by the two audit paths that enclose the matching subject names. Given that
an audit path contains at most

⌈
log2 n

⌉
sibling hashes for a batch of size n,

the median overhead is roughly one Kb per STH, log, and LWM subject.
Viewed from the perspective of a self-monitor, this is a significant bandwidth
improvement: as opposed to downloading the median batch of 32.6 Mb, one
Kb and any matching certificate(s) suffice. In the case of multiple logs, the
bandwidth improvement is even greater. For the notifier we already established
that it is relatively cheap to generate new notifications. Namely, in the single-
core case of 288 M notifications per hour the bandwidth overhead would be
640 Mbs (i.e., all proofs must be distributed before the next STH is issued). A
notifier can thus notify for a dozen of logs and a significant amount of LWM
subjects without running into any CPU or bandwidth restrictions. Notably
this is under the assumption of a sound STH frequency—one hour in our
evaluation, as used by Icarus and many other logs.
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4.3 Related Work
Earlier work related to transparent certificate and key management often use
dynamic authenticated dictionaries [5, 7, 11, 16]. CONIKS maps a user’s mail
address to her public key in a binary Merkle prefix tree, and after each update
a client self-monitors her own key-binding by fetching an exact-match (non-
)membership proof [20]. While our work is conceptually similar to CONIKS
since a subject receives one (non-)membership proof per log update, the main
difference is that LWM builds a new Merkle tree for each update in which
wild-card queries are supported. This idea is inapplicable for CONIKS because
a user is potentially interested in the public key of any mail address (hence
the ability to query the entire data structure on an exact-match). CONIKS
is similarly inapplicable for self-monitors in CT because a subject cares about
wild-card queries and new certificates. Without the need for wild-cards, any
authenticated dictionary could be used as a batch building block to instantiate
LWM. While a radix tree viewed as a Merkle tree could support efficient wild-
card proofs [13], it is more complex than necessary. Therefore, we built upon
the work of Kocher [17] and Nuckolls [24] with a twist on how to group the
data for a new use-case: LWM.

5 Conclusion
We proposed a backwards-compatible CT/bis extension that enables light-
weight monitoring (in short LWM). At the cost of a few hundred Kb per day, a
subject can either self-monitor or subscribe to verifiable certificate notifications
for a dozen of logs via an untrusted notifier. The security of LWM piggybacks
on the gossip-audit model of CT, and it relies only on the existence of at least
one honest monitor that verifies our extension. The cost of a compliant log is
overhead during the tree head construction, and this overhead is insignificant
in comparison to a log’s STH frequency. A notifier can generate verifiable
certificate notifications—even for wild-card queries for all domains under a
top-level domain—in the order of milliseconds on a single core. Given an STH
frequency of one hour and 288 M LWM subjects, the incurred bandwidth
overhead is roughly 640 Mbps for proofs. As such, a log could easily be its
own notifier on a 1 Gbps connection. Further, any willing third-party could
notify for a dozen of logs on a 10 Gbps connection.
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Abstract

Certificate Transparency (CT) requires that every certificate which is
issued by a certificate authority must be publicly logged. While a CT log
can be untrusted in theory, it relies on the assumption that every client
observes and cryptographically verifies the same log. As such, some form
of gossip mechanism is needed in practice. Despite CT being adopted
by several major browser vendors, no gossip mechanism is widely de-
ployed. We suggest an aggregation-based gossip mechanism that passively
observes cryptographic material that CT logs emit in plaintext, aggre-
gating at packet processors (such as routers and switches) to periodically
verify log consistency off-path. In other words, gossip is provided as-a-
service by the network. Our proposal can be implemented for a variety
of programmable packet processors at line-speed without aggregation
distinguishers (throughput), and based on 20 days of RIPE Atlas measure-
ments that represent clients from 3500 autonomous systems we show that
significant protection against split-viewing CT logs can be achieved with
a realistic threat model and an incremental deployment scenario.

1 Introduction
The HyperText Transfer Protocol Secure (HTTPS) ecosystem is going through
a paradigm shift. As opposed to blindly trusting that Certificate Authorities
(CAs) only issue certificates to the rightful domain owners—a model known for
its weakest-link security [30]—transparency into the set of issued certificates
is incrementally being required by major browser vendors [41, 52]. This
transparency is forced and takes the form of Certificate Transparency (CT) logs:
the idea is to reject any TLS certificate that have yet to be publicly logged, such
that domain owners canmonitor the logs for client-accepted certificates to detect
certificate mis-issuance after the fact [45]. While the requirement of certificate
logging is a significant improvement to the HTTPS ecosystem, the underlying
problem of trusting CAs cannot be solved by the status quo of trusted CT
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logs (described further in Section 2.1). Therefore, it is paramount that nobody
needs to trust these logs once incremental deployments are matured.

CT is formalized and cryptographically verifiable [28], supporting inclu-
sion and consistency proofs. This means that a client can verify whether a log
is operated correctly: said certificates are included in the log, and nothing is
being removed or modified. Despite the ability to cryptographically verify
these two properties, there are no assurances that everybody observes the same
log [20, 45]. For example, certificate mis-issuance would not be detected by
a domain owner that monitors the logs if fraudulently issued certificates are
shown to the clients selectively. A log that serves different versions of itself is
said to present a split view [51]. Unless such log misbehaviour can be detected,
we must trust it not to happen.

The solution to the split viewing problem is a gossip mechanism which en-
sures that everybody observes the same consistent log [45]. This assumption is
simple in theory but remarkably hard in practice due to client privacy, varying
threat models, and deployment challenges [51, 59]. While Google started on a
package that supports minimal gossip [29] and the mechanisms of Nordberg
et al. [51], there is “next to no deployment in the wild” [34]. To this end, we
propose a gossip mechanism that helps detecting split-view attacks retroac-
tively based on the idea of packet processors, such as routers and middleboxes,
that aggregate Signed Tree Heads (STHs)—succinct representations of the logs’
states—that are exposed to the network in plaintext. The aggregated STHs
are then used to challenge the logs to prove consistency via an off-path, such
that the logs cannot distinguish between challenges that come from different
aggregators. Given this indistinguishability assumption, it is non-trivial to
serve a consistent split-view to an unknown location [35]. Thus, all aggregators
must be on the same view, and accordingly all clients that are covered by these
aggregators must also be on the same view despite not doing any explicit gossip
themselves because gossip is provided as-a-service by the network. An isolated
client (i.e., untrusted network path to the aggregator) is notably beyond reach
of any retroactive gossip [59].

The premise of having STHs in plaintext is controversial given current
trends to encrypt transport protocols, which is otherwise an approach that
combats inspection of network traffic and protocol ossification [31, 40]. We
argue that keeping gossip related material in plaintext to support aggregation-
based gossip comes with few downsides though: it is easy to implement, there
are no major negative privacy impacts, and it would offer significant protection
for a large portion of the Internet with a realistic threat model despite relatively
small deployment efforts. The three main limitations are no protection against
isolated clients, reliance on clients that fetch STHs from the logs in plaintext,
and possible concerns surrounding protocol ossification [40]. Our contribu-
tions are:

• Design and security considerations for a network-based gossip mecha-
nism that passively aggregates STHs to verify log consistency off-path
(Section 3).
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• Generic implementations of the aggregation step using P4 [12] and
XDP [39] for plaintext STHs, supporting line-speed packet processing
on systems that range from switches, routers, network interface cards,
and Linux (Section 4).

• A simulation based on RIPEAtlas measurements that evaluate the impact
of deploying aggregation-based gossip at ASes and IXPs. Our evaluation
shows that incremental roll-out at well-connected locations would protect
a significant portion of all Internet clients from undetected split views
(Section 5).

Besides the sections referenced above, the paper introduces necessary back-
ground in Section 2 and provides discussion, conclusion, and future work in
Sections 6–8. A full version with additional implementation details is available
online [23].

2 Background
First additional prerequisites are provided on CT and the status quo, then the
techniques which allow us to program custom packet processors are introduced.

2.1 Certificate Transparency
The main motivation of CT is that the CA ecosystem is error-prone [44]:
a CA can normally issue certificates for any domain name, and given that
there are hundreds of trusted CAs an attacker only needs to target the weakest
link [30]. While the requirement of CT logging all certificates cannot prevent
mis-issuance proactively, it allows anyone to detect it retroactively by moni-
toring the logs [45]. After a log promises to include a certificate by issuing
a Signed Certificate Timestamp (SCT), a new STH including the appended
certificate must be issued within a Maximum Merge Delay (MMD). Typically,
logs use 24 hour MMDs. Should non-included SCTs and/or inconsistent STHs
be found, binding evidence of misbehaviour exists because these statements are
digitally signed by the logs. Other than MMD a log’s policy defines parameters
such as STH frequency: the number of STHs that can be issued during an
MMD, making it harder to track clients [51].

CT is being deployed across Apple’s platform [41] andGoogle’s Chrome [52].
The status quo is to trust a CA-signed certificate if it is accompanied by two
or more SCTs, thereby relying on at least one log to append each certificate
so that mis-issuance can be detected by monitors that inspect the logs. The
next step of this incremental deployment is to verify that these certificates are
logged by querying for inclusion [58], and that the log’s append-only property
is respected by challenging the log to prove STH consistency. Finally, to fully
distrust CT logs we need mechanisms that detect split-views. One such mech-
anism which is based on programmable packet processors (introduced next)
is presented in Section 3, and it is compared to related work on CT gossip in
Section 6.
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2.2 Programmable Data Planes
Packet processors such as switches, routers, and network interface cards are
typically integrated tightly using customized hardware and application-specific
integrated circuits. This inflexible design limits the potential for innovation
and leads to long product upgrade cycles, where it takes years to introduce new
processing capabilities and support for different protocols and header fields
(mostly following lengthy standardization cycles). The recent shift towards
flexible match+action packet-processing pipelines—including RMT [13], Intel
Flexpipe [3], Cavium XPA [2], and Barefoot Tofino [5]—now have the poten-
tial to change the way in which packet processing hardware is implemented: it
enables programmability using high-level languages, such as P4, while at the
same time maintaining performance comparable to fixed-function chips.

2.2.1 P4

The main goal of P4 is to simplify programming of protocol-independent
packet processors by providing an abstract programming model for the net-
work data plane [12]. In this setting, the functionality of a packet processing
device is specified without assuming any hardwired protocols and headers.
Consequently, a P4 program must parse headers and connect the values of
those protocol fields to the actions that should be executed based on a pipeline
of reconfigurable match+action tables. Based on the specified P4 code, a front-
end compiler generates a high-level intermediate representation that a back-end
compiler uses to create a target-dependent program representation. Compilers
are available for several platforms, including the software-based simple switch
architecture [1], SDNet for Xilinx NetFPGA boards [15], and Netronome’s
smart network interfaces [4]. It is also possible to compile basic P4 programs
into eBPF byte code [16].

2.2.2 XDP

The Berkeley Packet Filter (BPF) is a Linux-based packet filtering mecha-
nism [47]. Verified bytecode is injected from user space, and executed for
each received packet in kernel space by a just-in-time compiler. Extended BPF
(eBPF) enhances the original BPF concept, enabling faster runtime and many
new features. For example, an eBPF program can be attached to the Linux
traffic control tool tc, and additional hooks were defined for a faster eXpress
Data Path (XDP) [39]. In contrast to the Intel Data Plane Development Kit
(DPDK), which runs in user space and completely controls a given network
interface that supports a DPDK driver, XDP cooperates with the Linux stack
to achieve fast, programmable, and reconfigurable packet processing using
C-like programs.
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Figure 1: Packet processor that aggregates plaintext STHs for off-path verifica-
tion.

3 Design
An overview of aggregation-based gossip is shown in Figure 1. The setting
consists of logs that send plaintext STHs to clients over a network, and as part of
the network inline packet processors passively aggregate observed STHs to their
own off-path challengers which challenge the logs to prove consistency. A log
cannot present split views to different clients that share an aggregating vantage
point because it would trivially be detected by that vantage point’s challenger.
A log also cannot present a persistent split view to different challengers because
they are off-path in the sense that they are indistinguishable from one another.
This means that every client that is covered by an aggregator must be on the
same view because at least one challenger will otherwise detect an inconsistency
and report it. A client that is not directly covered by an aggregator may
receive indirect protection in the form of herd immunity. This is discussed in
Section 7.4.

3.1 Threat Model and Security Notion
The overarching threat is undetectable domain impersonation (ex-post) by
an attacker that is capable of compromising at least one CA and a sufficient
number of CT logs to convince a client into accepting a forged certificate.
We assume that any illegitimately issued certificate would be detected by the
legitimate domain owner through self or delegated third-party monitoring.
This means that an attacker must either provide a split view towards the
victim or the monitoring entity. We also assume that clients query the logs
for certificate inclusion based on STHs that they acquire from the logs via
plaintext mechanisms that packet processors can observe, and that some other
entities than challengers process STHs using the chosen off-paths (Section 7.1).
We do not account for the fact that CA compromises may be detected by other
means, focusing solely on split-viewing CT logs.

3.1.1 Limitations

Our gossip mechanism is limited to STHs that packet processors can observe.
As such, a client isolated by an attacker is not protected. We limit ourselves
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to attackers that act over a network some distance (in the sense of network
path length) from a client in plaintext so that aggregation can take place. Our
limitations and assumptions are further discussed in Section 7.1.

3.1.2 Attackers

Exceptionally powerful attackers can isolate clients, but clients are not necessarily
easy to isolate for a significant number of relevant attackers. Isolation may
require physical control over a device [32], clients may be using anonymity
networks like Tor where path selection is inherently unpredictable [27], or
sufficiently large parts of the network cannot be controlled to ensure that
no aggregation takes place. This may be the case if we consider a nation
state actor attacking another nation state actor, the prevalence of edge security
middleboxes, and that home routers or NICs nearby the clients could aggregate.
Any attacker that cannot account for these considerations is within our threat
model.

3.1.3 Security Notion

To bypass our approach towards gossip an adaptive attacker may attempt
to actively probe the network for aggregating packet processors. This leads
us to the key security notion: aggregation indistinguishability. An attacker
should not be able to determine if a packet processor is aggregating STHs. The
importance of aggregation indistinguishability motivates the design of our
gossip mechanism into two distinct components: aggregation that takes place
inline at packet processors, and periodic off-path log challenging that checks
whether the observed STHs are consistent.

3.2 Packet Processor Aggregation
An aggregating packet-processor determines for each packet if it is STH-related.
If so, the packet is cloned and sent to a challenging component for off-path
verification. The exact definition of STH-related depends on the plaintext
source, but it is ultimately the process of inspecting multiple packet headers
such as transport protocol and port number. It should be noted that the
original packet must not be dropped or modified. For example, an aggregator
would have a trivial aggregation distinguisher if it dropped any malformed
STH.

For each aggregating packet processor we have to take IP fragmentation
into consideration. Recall that IP fragmentation usually occurs when a packet
is larger than the MTU, splitting it into multiple smaller IP packets that are
reassembled at the destination host. Normally, an STH should not be frag-
mented because it is much smaller than the de-facto minimum MTU of (at
least) 576 bytes [14, 24], but an attacker could use fragmentation to inten-
tionally spread expected headers across multiple packets. Assuming stateless
packet processing, an aggregator cannot identify such fragmented packets as
STH-related because some header would be absent (cf. stateless firewalls). All
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tiny fragments should therefore be aggregated to account for intentional IP
fragmentation, which appears to have little or no impact on normal traffic
because tiny fragments are anomalies [55]. The threat of multi-path fragmen-
tation is discussed in Section 7.1.

Large traffic loads must also be taken into account. If an aggregating
packet processor degrades in performance as the portion of STH-related traffic
increases, a distant attacker may probe for such behaviour to determine if a
path contains an aggregator. Each implementation must therefore be evaluated
individually for such behaviour, and if trivial aggregation distinguishers exist
this needs to be solved. For example, STH-related traffic could be aggregated
probabilistically to reduce the amount of work. Another option is to load-
balance the traffic before aggregation, i.e., avoid worst-case loads that cannot
be handled.

3.3 Off-Path Log Challenging
A challenger is setup to listen for aggregated traffic, reassembling IP fragments
and storing the aggregated STHs for periodic off-path verification. Periodic
off-path verification means that the challenger challenges the log based on its
own (off-path fetched) STHs and the observed (aggregated) STHs to verify log
consistency periodically, e.g., every day. The definition of off-path is that the
challenger must not be linkable to its aggregating packet processor(s) or any
other challenger (including itself). Without an off-path there is no gossip step
amongst aggregator-challenger instances that are operated by different actors,
and our approach towards gossip would only assert that clients behind the
same vantage point observe the same logs. If a log cannot distinguish between
different challengers due to the use of off-paths, however, it is non-trivial to
maintain a targeted split-view towards an unknown location. Therefore, we
get a form of implicit gossip [35] because at least one challenger would detect
an inconsistency unless everybody observes the same log. If every challenger
observes the same log, so does every client that is covered by an aggregating
packet processor. Notably the challenger component does not run inline to
avoid timing distinguishers. Note that there are other important considerations
when implementing a challenger, as discussed in Section 7.1.

4 Distinguishability Experiments
There are many different ways to implement the aggregation step. We decided
to use P4 and XDP because a large variety of programmable packet processors
support these languages (Section 2.2). The aggregated plaintext source is as-
sumed to be CT-over-DNS [43], which means that a client obtains STHs by
fetching IN TXT resource records. Since languages for programmable packet
processors are somewhat restricted, we facilitated packet processing by requir-
ing that at most one STH is sent per UDP packet. This is reasonable because
logs should only have one most recent STH. A DNS STH is roughly 170 bytes
without any packet headers and should normally not be fragmented, but to
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ensure that we do not miss any intentionally fragmented STHs we aggregate
every tiny fragment. We did not implement the challenging component be-
cause it is relatively easy given an existing off-path. Should any scalability issue
arise for the challenger there is nothing that prevents a distributed front-end
that processes the aggregated material before storage. Storage is not an issue
because there are only a limited amount of unique STHs per day and log (one
new STH per hour is a common policy, and browsers recognize ≈ 40 logs).
Further implementation details can be found online [6, 23].

4.1 Setup
We used a test-bed consisting of a traffic generator, a traffic receiver, and an
aggregating target in between. The first target is a P4-enabled NetFPGA SUME
board that runs an adapted version of our P4 reference implementation. The
second target is a net-next kernel v4.17.0-rc6 Linux machine that runs XDP
on one core with a 10 Gb SFP+ X520 82599ES Intel card, a 3.6 GHz Intel
Core i7-4790 CPU, and 16 GB of RAM at 1600 MHz (Hynix/Hyundai). We
would like to determine whether there are any aggregation distinguishers as
the fraction of STHs (experiment 1) and tiny fragments (experiment 2) in the
traffic is increased from 0–100%, i.e., does performance degrade as a function
of STH-related rate? Non-fragmented STH packets are 411 bytes (we used
excessively large DNS headers to maximize the packet parsing overhead), and
tiny fragments are 64 bytes. All background traffic have the same packet sizes
but is not deemed STH-related.

4.2 Results
Figure 2a shows throughput as a function of STH-related rate for the P4-enabled
NetFPGA.While we were unable to observe any distinguisher between normal
routing and the edge case of 100% aggregation for non-fragmented STH packets,
there is a small constant throughput difference for tiny fragments (7.5 Kbps).
This is a non-negligible program distinguisher if a packet processor is physically
isolated as in our benchmark, i.e., something other than a routing program is
running but it is not necessarily an aggregator because performance does not
degrade as a function of increased STH-related rate. However, we found such
degradation behaviour for the single-core XDP case (Figure 2b). If line-speed
is higher than 2 Gbps, STHs could be aggregated probabilistically or traffic
could be load-balanced to overcome this issue.

4.3 Lessons Learned
P4-NetFPGA provides aggregation indistinguishability regardless of STH load.
For XDP, it depends on the scenario: what is the line-rate criteria and how
many cores are available. For example, five cores support 10 Gbps aggregation
indistinguishability without probabilistic filtering or load balancing.
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Figure 2: Throughput as a function of STH-related traffic that is aggregated.

5 Estimated Impact of Deployment
We conducted 20 daily traceroute measurements during spring 2018 on the
RIPE Atlas platform to evaluate the effectiveness of aggregation-based gossip.
The basic idea is to look at client coverage as central ASes and IXPs aggregate
STHs. If any significant client coverage can be achieved, the likelihood of
pulling off an undetected split-view will be small.
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Figure 3: Path length and stability towards Google and NORDUnet.

5.1 Setup
We scheduled RIPE Atlas measurements from roughly 3500 unique ASes that
represent 40% of the IPv4 space, trace-routing Google’s authoritative CT-over-
DNS server and NORDUnet’s CT log to simulate clients that fetch DNS
STHs in plaintext. Each traceroute result is a list of traversed IPs, and it can be
translated into the corresponding ASes and IXPs using public data sets [7, 18].
In other words, traversed ASes and IXPs can be determined for each probe.
Since we are interested in client coverage as ASes and IXPs aggregate, each probe
is weighted by the IPv4 space of its AS. While an IP address is an imperfect
representation of a client, e.g., an IP may be unused or reused, it gives a decent
idea of how significant it is to cover a given probe.

5.2 Results
Figure 3 shows AS/IXP path length and stability from the probes to the targets.
If the AS path length is one, a single AS is traversed before reaching the target.
It is evident that an AS path tends to be one hop longer towards NORDUnet
than Google because there is a rough off-by-one offset on the x-axis. A similar
trend of greater path length towards NORDUnet can be observed for IXPs.
For example, 74.0% of all paths traversed no IXP towards Google, but 58.5%
of all paths traversed a single IXP towards NORDUnet. These results can
be explained by infrastructural differences of our targets: since Google is a
worldwide actor an average path should be shorter than compared to a region-
restricted actor like NORDUnet. We also observed that AS and IXP paths
tend to be quite stable over 20 days (the duration of our measurements). I.e.,
if AS a and b are traversed it is unlikely to suddenly be routed via AS c .

Figure 4 shows coverage of the RIPE Atlas network as 1...n actors aggregate
STHs. For example, 100% and 50% coverage means that at least 40% and 20%
of the full IPv4 space is covered. The aggregating ASes and IXPs were selected
based on the most commonly traversed vantage points in our measurements
(Pop), as well as CAIDA’s largest AS ranking [17]. We found that more cover-
age is achieved when targetingNORDUnet than Google. This is expected given
that the paths tend to be longer. If CAIDA’s top-32 enabled aggregation, the cov-
erage would be significant towards Google (31.6%) and NORDUnet (58.1%).
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Figure 4: Coverage as a function of aggregation opt-in.

5.3 Lessons Learned
A vast majority of all clients traverse at least one AS that could aggregate. It is
relatively rare to traverse IXPs towards Google but not NORDUnet. We also
learned that paths tends to be stable, which means that the time until split view
detection would be at least 20 days if it is possible to find an unprotected client.
This increases the importance of aggregation indistinguishability. Finally, we
identified vantage points that are commonly traversed using Pop, and these
vantage points are represented well by CAIDA’s independent AS ranking.
Little opt-in from ASes and IXPs provides significant coverage against an
attacker that is relatively close to a client (cf. world-wide infrastructure of
Google). Although we got better coverage for NORDUnet, any weak attacker
would approach Google’s coverage by renting infrastructure nearby. Any weak
attacker could also circumvent IXP aggregation by detecting the IXP itself [49].
As such, top-ranked AS aggregation should give the best split-view protection.

6 Related Work
Earlier approaches towards CT gossip are categorized as proactive or retroactive
in Figure 5. We consider an approach proactive if gossip takes place before
SCTs and/or STHs reach the broader audience of clients. Syta et al. proposed
proactive witness cosigning, in which an STH is collectively signed by a large
number of witnesses and at most a fraction of those can be faulty to ensure that
a benevolent witness observed an STH [59]. STH cross-logging [29, 36, 37] is
similar in that an STH must be proactively disclosed in another transparency
log to be trusted, avoiding any additional cosigning infrastructure at the cost
of reducing the size and diversity of the witnessing group. Tomescu and
Devadas [60] suggested a similar cross-logging scheme, but split-view detection
is instead reduced to the difficulty of forking the Bitcoin blockchain (big-O
cost of downloading all block headers as a TLS client). The final proactive
approach is STH pushing, where a trusted third-party pushes the same verified
STH history to a base of clients [58].

We consider a gossip mechanism retroactive if gossip takes place after SCTs
and/or STHs reach the broader audience of clients. Chuat et al. proposed that
TLS clients and TLS servers be modified to pool exchanged STHs and relevant
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Figure 5: A categorization of approaches towards CT gossip.

consistency proofs [20]. Nordberg et al. continued this line of work, suggesting
privacy-preserving client-server pollination of fresh STHs [51]. Nordberg et al.
also proposed that clients feedback SCTs and certificate chains on every server
revisit, and that trusted auditor relationships could be engaged if privacy need
not be protected. The latter is somewhat similar to the formalized client-
monitor gossip of Chase and Meiklejohn [19], as well as the CT honey bee
project where a client process fetches and submits STHs to a pre-compiled list
of auditors [9]. Laurie suggested that a client can resolve privacy-sensitive SCTs
to privacy-insensitive STHs via DNS (which are easier to gossip) [43]. Private
information retrievals could likely achieve something similar [46]. Assuming
that TLS clients are indistinguishable from one another, split-view detection
could also be implicit as proposed by Gunn et al. for the verifiable key-value
store CONIKS [35, 48].

Given that aggregation-based gossip takes place after an STH is issued, it
is a retroactive approach. As such, we cannot protect an isolated client from
split-views [59]. Similar to STH pooling and STH pollination, we rely on client-
driven communication and an existing infrastructure of packet processors to
aggregate. Our off-path verification is based on the same multi-path probing
and indistinguishability assumptions as Gunn et al. [8, 35, 61]. Further, given
that aggregation is application neutral and deployable on hosts, it could provide
gossip for the CT honey bee project (assuming plaintext STHs) and any other
transparency application like Trillian [33]. Another benefit when compared to
browsing-centric and vendor-specific approaches is that a plethora of HTTPS
clients are covered, ranging from niche web browsers to command line tools
and embedded libraries that are vital to protect but yet lack the resources of
major browser vendors [10, 25]. Our approach coexists well with witness
cosigning and cross-logging due to different threat models, but not necessarily
STH pushing if the secure channel is encrypted (no need to fetch what a trusted
party provides).

7 Discussion
Next we discuss assumptions, limitations and deployment, showing that our
approach towards retroactive gossip can be deployed to detect split-views by
many relevant attackers with relatively little effort. The main drawback is
reliance on clients fetching STHs in plaintext, e.g., using CT-over-DNS [43].
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7.1 Assumptions and Limitations
Aggregation-based gossip is limited to network traffic that packet processors
can observe. The strongest type of attacker in this setting—who can completely
isolate a client—trivially defeats our gossip mechanism and other retroactive
approaches in the literature (see Section 6). A weaker attacker cannot isolate a
client, but is located nearby in a network path length sense. This limits the
opportunity for packet processor aggregation, but an attacker cannot rule it out
given aggregation indistinguishability. Section 4 showed based on performance
that it is non-trivial to distinguish between (non-)aggregating packet processors
on two different targets using P4 and XDP. Off-path challengers must also
be indistinguishable from one another to achieve implicit gossip. While we
suggested the use of anonymity networks like Tor, a prerequisite is that this
is in and of itself not an aggregation distinguisher. Therefore, we assume that
other entities also use off-paths to fetch and verify STHs. The fact that a unique
STH is not audited from an off-path could also be an aggregation distinguisher.
To avoid this we could rely on a verifiable STH history [50] and wait until the
next MMD to audit or simply monitor the full log so that consistency proofs
are unnecessary.

The existence of multiple network paths are fundamental to the structure
and functioning of the Internet. A weak attacker may use IP fragmentation
such that each individual STH fragment is injected from a different location to
make aggregation harder, approaching the capabilities of a stronger attacker that
is located closer to the client. This is further exacerbated by the deployment
of multi-path transport protocols like MPTCP (which can also be fragmented).
Looking back at our RIPE Atlas measurements in Section 5, the results to-
wards Google’s world-wide infrastructure better represent an active attacker
that takes some measures to circumvent aggregation by approaching a client
nearby the edge. Given that the likelihood of aggregation is high if any IXP is
present (Figure 4), aggregation at well-connected IXPs are most likely to be
circumvented.

7.2 Deployment
Besides aggregating at strategic locations in the Internet’s backbone, ISPs and
enterprise networks have the opportunity to protect all of their clients with
relatively little effort. Deployment of special-purpose middleboxes are already
prevalent in these environments, and then the inconvenience of fragmentation
tends to go away due to features such as packet reassembly. Further, an attacker
cannot trivially circumvent the edge of a network topology—especially not if
aggregation takes place on an end-system: all fragments are needed to reassemble
a packet, which means that multi-path fragmentation is no longer a threat. If
aggregation-based gossip is deployed on an end-system, STHs could be hooked
using other approaches than P4/XDP. For example, shim-layers that intercept
TLS certificates higher up in the networking stack were already proposed
by Bates et al. [11] and O’Neill et al. [53]. In this setting, an end-system is
viewed as the aggregating packet processor, and it reports back to an off-path
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challenger that may be a local process running on the same system or a remote
entity, e.g., a TelCo could host challengers that collect aggregated STHs from
smartphones.

While we looked at programming physical packet processors like routers,
STH aggregation could be approached in hypervisors and software switches [54]
to protect many virtual hosts. If CT-over-DNS is used to fetch STHs, it would
be promising to output DNS server caches to implement the aggregation step.
Similar to DNS servers, so called Tor exist relays also operate DNS caches.
In other words, P4 and XDP are only examples of how to instantiate the
aggregation step. Depending on the used plaintext source, packet processor,
and network topology other approaches may be more suitable, e.g., C for
vendor-specific middleboxes.

7.3 Retroactive Gossip Benefits From Plaintext
As opposed to an Internet core that only forwards IP packets, extra function-
ality is often embedded which causes complex processing dependencies and
protocol ossification [40]. Many security and protocol issues were found for
middleboxes that provides extra functionality [31, 42], resulting in the mindset
that everything should be encrypted [42]. Our work is controversial because it
goes against this mindset and advocates that STHs should be communicated in
plaintext. We argue that this makes sense in the context of STHs due to the
absence of privacy concerns and because the entire point of gossip is to make
STHs available (rather than end-to-end). The idea of intentionally exposing
information to the network is not new, e.g., MPQUIC is designed to support
traffic shaping [21].

While we used CT-over-DNS as a plaintext source, there is a push towards
DNS-over-TLS [26] and DNS-over-HTTPS [38]. Wide use of these approaches
could undermine our gossip mechanism, but ironically the security of TLS
could be jeopardized unless gossip is deployed. In other words, long term gossip
is an essential component of CT and other transparency logs to avoid becoming
yet another class of trusted third-parties. If proactive approaches such as witness
cosigning are rejected in favour of retroactive mechanisms, then ensuring that
STHs are widely spread and easily accessible is vital. An STH needs no secrecy
if the appropriate measures are taken to make it privacy-insensitive [51]. While
secure channels also provide integrity and replay protection, an STH is already
signed by logs and freshness is covered by MMDs, as well as issue frequency
to protect privacy. A valid argument against exposing any plaintext to the
network is protocol ossification. We emphasize that our design motivates
why packet processors should fail open: otherwise there is no aggregation
indistinguishability. Note that there are other plaintext sources than CT-
over-DNS that could be aggregated. However, if these sources require stream-
reassembly it is generally hard to process in languages such as P4 and XDP [22].
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7.4 Indistinguishability and Herd Immunity
An attacker that gains control over a CT log is bound to be more risk averse
than an attacker that compromises a CA. There is an order of magnitude fewer
logs than CAs, and client vendors are likely going to be exceptionally picky
when it comes to accepted and rejected logs. We have already seen examples of
this, including Google Chrome disqualifying logs that made mistakes: Izenpe
used the same key for production and testing [56], and Venafi suffered from an
unfortunate power outage [57]. Risk averse attackers combined with packet
processors that are aggregation indistinguishable may lead to herd immunity:
despite a significant fraction of clients that lack aggregators, indirect protection
may be provided because the risk of eventual detection is unacceptable to
many attackers. Hof and Carle [37] and Nordberg et al. [51] discussed herd
immunity briefly before us. While herd immunity is promising, it should be
noted that aggregation distinguishable packet processors at the edge of a network
topology may be acceptable for some. In other words, if an aggregator cannot
be circumvented but it is detectable split-views would still be deterred against
covered clients if the challenger is off-path.

8 Conclusion and Future Work
Wide spread modifications of TLS clients are inevitable to support CT gossip.
We propose that these modifications include challenging the logs to prove
certificate inclusion based on STHs fetched in plaintext, thereby enabling the
traversed packet processors to assist in split view detection retroactively by
aggregating STHs for periodic off-path verification. Our results show that the
aggregation-step can be implemented without throughput-based distinguishers
for a distant attacker, and that our approach offers rapid incremental deploy-
ment with high impact on a significant fraction of Internet users. Beyond being
an application neutral approach that is complementary to proactive gossip, a
compelling aspect is that core packet processors are used (rather than clients) as
a key building block: should a consistency issue arise, it is already in the hands
of an actor that is better equipped to investigate the cause manually. Further,
considering that far from all TLS clients are backed by big browser vendors
(not to mention other use-cases of transparency logs in general) it is likely a
long-term win to avoid pushing complex retroactive gossip logic into all the
different types of clients when there are orders of magnitudes fewer packet
processors that could aggregate to their own off-path challengers. Future work
includes different instantiations of the aggregation step and evaluating whether
aggregation indistinguishability is provided based on throughput and/or la-
tency. The setting may also change in some scenarios, e.g., if DNS caches are
aggregated the transport need not be plaintext.
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Abstract

The security of the web improved greatly throughout the last couple of
years. A large majority of the web is now served encrypted as part of
HTTPS, and web browsers accordingly moved from positive to negative
security indicators that warn the user if a connection is insecure. A
secure connection requires that the server presents a valid certificate
that binds the domain name in question to a public key. A certificate
used to be valid if signed by a trusted Certificate Authority (CA), but
web browsers like Google Chrome and Apple’s Safari have additionally
started to mandate Certificate Transparency (CT) logging to overcome
the weakest-link security of the CA ecosystem. Tor and the Firefox-based
Tor Browser have yet to enforce CT.

We present privacy-preserving and incrementally-deployable designs
that add support for CT in Tor. Our designs go beyond the currently
deployed CT enforcements that are based on blind trust: if a user that
uses Tor Browser is man-in-the-middled over HTTPS, we probabilistically
detect and disclose cryptographic evidence of CA and/or CT log misbe-
havior. The first design increment allows Tor to play a vital role in the
overall goal of CT: detect mis-issued certificates and hold CAs accountable.
We achieve this by randomly cross-logging a subset of certificates into
other CT logs. The final increments hold misbehaving CT logs account-
able, initially assuming that some logs are benign and then without any
such assumption. Given that the current CT deployment lacks strong
mechanisms to verify if log operators play by the rules, exposing misbe-
havior is important for the web in general and not just Tor. The full design
turns Tor into a system for maintaining a probabilistically-verified view
of the CT log ecosystem available from Tor’s consensus. Each increment
leading up to it preserves privacy due to and how we use Tor.
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1 Introduction
Metrics reported by Google and Mozilla reveal that encryption on the web
skyrocketed the past couple of years: at least 84% of all web pages load using
HTTPS [24, 44]. An HTTPS connection is initiated by a TLS handshake
where the client’s web browser requires that the web server presents a valid
certificate to authenticate the identity of the server, e.g., to make sure that
the client who wants to visit mozilla.org is really connecting to Mozilla,
and not, say, Google. A certificate specifies the cryptographic key-material
for a given domain name, and it is considered valid if it is digitally signed by a
Certificate Authority (CA) that the web browser trusts.

It is a long-known problem that the CA trust model suffers from weakest-
link security: web browsers allow hundreds of CAs to sign arbitrary domain-
name to key-bindings, which means that it suffices to compromise a single
CA to acquire any certificate [9, 18]. Motivated by prominent CA com-
promises, such as the issuance of fraudulent certificates for *.google.com,
*.mozilla.org and *.torproject.org byDigiNotar [49], multiple browser
vendors mandated that certificates issued by CAs must be publicly disclosed
in Certificate Transparency (CT) logs to be valid. The idea behind CT is
that, by making all CA-issued certificates transparent, mis-issued ones can be
detected after the fact [35, 36, 37]. The appropriate actions can then be taken
to keep the wider web safe, e.g., by investigating the events that lead up to
a particular incident, removing or limiting trust in the offending CA, and
revoking affected certificates. Google Chrome and Apple’s Safari currently
enforce CT by augmenting the TLS handshake to require cryptographic proofs
from the server that the presented certificate will appear in CT logs that the
respective web browsers trust [3, 23].

In addition to increased encryption on the web, the ability to access it
anonymously matured as well. Tor with its Tor Browser has millions of
daily users [16, 40], and efforts are ongoing to mature the technology for
wider use [43]. Tor Browser builds on-top of Mozilla’s Firefox: it relays traffic
between the user and the web server in question by routing everything through
the Tor network, which is composed of thousands of volunteer-run relays
that are located across the globe [64]. Just like attackers may wish to break
security properties of HTTPS, it may also be of interest to break the anonymity
provided by Tor. A common technique for deanonymization (known to be
used in practice) is to compromise Tor Browser instead of circumventing the
anonymity provided by Tor [5, 10, 22, 70]. Web browsers like Firefox (or
forks thereof) are one of the most complex software types that are widely used
today, leading to security vulnerabilities and clear incentives for exploitation.
For example, the exploit acquisition platform Zerodium offers up to $100, 000
for a Firefox zero-day exploit that provides remote code execution and local
privilege escalation (i.e., full control of the browser) [69].

An attacker that wishes to use such an exploit to compromise and then
ultimately deanonymize a Tor Browser user has to deliver the exploit somehow.
Since the web is mostly encrypted, this primarily needs to take place over an
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HTTPS connection where the attacker controls the content returned by the
web server. While there are numerous possible ways that the attacker can
accomplish this, e.g., by compromising a web server that a subset of Tor
Browser users visit, another option is to impersonate one or more web servers
by acquiring fraudulent certificates. Due to the Tor network being run by
volunteers, getting into a position to perform such an attack is relatively
straightforward: the attacker can volunteer to run malicious exit relays [68].
The same is true for an attacker that wishes to man-in-the-middle connections
made by Tor Browser users. In some cases a Tor Browser exploit may not
even be needed for deanonymization, e.g., the attacker can observe if the user
logs-on to a service linking an identity.

1.1 Introducing CTor
We propose an incrementally deployable and privacy-preserving design that is
henceforth referred to as CTor. By bringing CT to Tor, HTTPS-based man-
in-the-middle attacks against Tor Browser users can be detected after the fact
when conducted by attackers that:

1. can acquire any certificate from a trusted CA,

2. with the necessary cryptographic proofs from enough CT logs so that
Tor Browser accepts the certificate as valid without the attacker making
it publicly available in any of the controlled logs, and

3. with the ability to gain full control of Tor Browser shortly after estab-
lishing an HTTPS connection.

The first and third capabilities are motivated directly by shortcomings in
the CA ecosystem as well as how the anonymity of Tor Browser is known
to be attacked. The second capability assumes the same starting point as
Google Chrome and Apple’s Safari, namely, that the logs are trusted to promise
public logging, which is in contrast to being untrusted and thus forced to
prove it. This is part of the gradual CT deployment that avoided breakage
on the web [55]. Therefore, we start from the assumption that Tor Browser
accepts a certificate as valid if accompanied by two independent promises of
public logging. The limitation of such CT enforcement is that it is trivially
bypassed by an attacker that controls two seemingly independent CT logs.
This is not to say that trusting the log ecosystem would be an insignificant
Tor Browser improvement when compared to no CT at all, but CTor takes us
several steps further by relaxing and ultimately eliminating the trust which
is currently (mis)placed in today’s browser-recognized CT logs. We already
observed instances of CT logs that happened to violate their promises of public
logging [41], show inconsistent certificate contents to different parties [52, 53],
and get their secret signing keys compromised due to disclosed remote code-
execution vulnerabilities [50].

The first design increment uses the CT landscape against the attacker to
ensure a non-zero (tweakable) probability of public disclosure each time a
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fraudulent certificate is used against Tor Browser. This is done by randomly
adding a subset of presented certificates to CT logs that the attacker may not
control (inferred from the accompanied promises of public logging). Such cer-
tificate cross-logging distributes trust across all CT logs, raising the bar towards
unnoticed certificate mis-issuance. Motivated by factors like privacy, security
and deployability, Tor Browser uses Tor relays as intermediates to cache and
interact with CT logs on its behalf. Such deferred auditing is a fundamental
part of our setting unless future distributed auditing mechanisms turn out to
be non-interactive from the browser’s perspective.

The next incremental step is to not only cross-log certificates but also
their promises of public logging. While it requires an additional CT log API
endpoint, it facilitates auditing of these promises if some logs are trustworthy.
The full design also holds logs accountable but without any such assumption:
Tor relays challenge the logs to prove correct operation with regards to a single
fixed view in Tor’s consensus, and potential issues are reported to auditors that
investigate them further.

1.2 Contribution and Structure
Section 2 introduces background on the theory and practise of CT, as well
as the anonymity network Tor. Section 3 motivates the intended attacker
and presents a unified threat model for CT and Tor. Section 4 describes the
full CTor design that eliminates all trust in the browser-recognized CT logs by
challenging them to prove certificate inclusion cryptographically, and would
result in a single probabilistically-verified view of the CT log ecosystem available
from Tor’s consensus. This view could be used by other browsers as the basis
of trust, greatly improving the security posture of the entire web. The security
analysis in Section 5 shows that one of the best bets for the attacker would be to
take network-wide actions against Tor to avoid public disclosure of certificate
mis-issuance and log misbehavior. Such an attack is trivially detected, but it is
hard to attribute unless reactive defenses are enabled at the cost of trade-offs.

The full design involves many different components that add deployment
burdens, such as the requirement of reliable CT auditors that investigate sus-
pected log misbehavior further. Therefore, we additionally propose two initial
increments that place some trust in CT logs (Section 6). The first increment
provides evidence to independent CT logs that fraudulent certificates were presented
while preserving privacy. This greatly impacts risk-averse attackers because one
part of their malicious behavior becomes transparent if the randomly selected
log operator is benign. For example, the targeted domain name is disclosed as
part of the cross-logged certificate, and awareness of the event draws unwanted
attention.

The next increment is minor from the perspective of Tor, but requires CT
logs to support an additional API. Similar changes were proposed in the context
of CT gossip [25]. If supported, Tor relays could expose both the mis-issued
certificates and the operators that promised to log them publicly without the
complexity of ever distinguishing between what is benign and fraudulent. This
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API change happens to also build auditor infrastructure directly into CT log
software, thereby paving the path towards the missing component of the full
design. We argue that CTor can be deployed incrementally: complete Firefox’s
CT enforcement [4], add our cross-logging increments, and finally put the
full design into operation. Each part of CTor would greatly contribute to the
open question of how to reduce and/or eliminate trust in browser-recognized log
operators, which is caused by the lack of an appropriate gossip mechanism as
well as privacy issues while interacting with the logs [20, 25, 46].

We show that circuit-, bandwidth- and memory-overheads are modest by
computing such estimates in Section 7. Therefore, we do not investigate
performance further in any experimental setting. Section 8 discusses privacy
aspects of our design choices with a focus on the essential role of the Tor
network’s distributed nature to preserve user privacy as well as the overall
security. In gist, a similar approach would be privacy-invasive without Tor, e.g.,
if adopted by Google Chrome. Section 9 outlines related work. Section 10
concludes the paper.

2 Background
The theory and current practise of CT is introduced first, then Tor and its
privacy-preserving Tor Browser.

2.1 Certificate Transparency
The idea to transparently log TLS certificates emerged at Google in response to
a lack of proposals that could be deployed without drastic ecosystem changes
and/or significant downsides [35]. By making the set of issued certificate
chains1 transparent, anyone that inspect the logs can detect certificate mis-
issuance after the fact. It would be somewhat circular to solve issues in the CA
ecosystem by adding trusted CT logs. Therefore, the cryptographic foundation
of CT is engineered to avoid any such reliance. Google’s gradual CT roll-out
started in 2015, and evolved from downgrading user-interface indicators in
Chrome to the current state of hard failures unless a certificate is accompanied
by a signed promise that it will appear in two CT logs [55]. Unlike Apple’s
Safari [3], these two logs must additionally be operated by Google and not-
Google to ensure independence [23].

The lack of mainstream verification, i.e., beyond checking signatures, al-
lows an attacker to side-step the current CT enforcement with minimal risk of
exposure if the required logs are controlled by the attacker. CTor integrates into
the gradual CT roll-out by starting on the premise of pairwise-independently
trusted CT logs, which avoids the risk of bad user experience [55] and sig-
nificant system complexity. For example, web pages are unlikely to break,
TLS handshake latency stays about the same, and no robust management of

1A domain owner’s certificate is signed by an intermediate CA, whose certificate is in turned
signed by a root CA that acts as a trust anchor [18]. Such a certificate chain is valid if it ends in a
trusted anchor that is shipped in the user’s system software.
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suspected log misbehavior is needed. Retaining the latter property as part of
our incremental designs simplifies deployment.

2.1.1 Cryptographic Foundation

The operator of a CT log maintains a tamper-evident append-only Merkle
tree [36, 37]. At any time, a Signed Tree Head (STH) can be produced which
fixes the log’s structure and content. Important attributes of an STH include
the tree head (a cryptographic hash), the tree size (a number of entries), and
the current time. Given two tree sizes, a log can produce a consistency proof
that proves the newer tree head entails everything that the older tree head does.
As such, anyone can verify that the log is append-only without downloading
all entries and recomputing the tree head. Membership of an entry can also be
proven by producing an inclusion proof for an STH. These proof techniques
are formally verified [17].

Upon a valid request, a log must add an entry and produce a new STH
that covers it within a time known as the Maximum Merge Delay (MMD),
e.g., 24 hours. This policy aspect can be verified because in response, a Signed
Certificate Timestamp (SCT) is returned. An SCT is a signed promise that an
entry will appear in the log within an MMD. A log that violates its MMD is
said to perform an omission attack. It can be detected by challenging the log to
prove inclusion. A log that forks, presenting one append-only version to some
entities and another to others, is said to perform a split-view attack. Split-views
can be detected by STH gossip [8, 14, 46, 58].

2.1.2 Standardization and Verification

The standardized CT protocol defines public HTTP(S) endpoints that allow
anyone to check the log’s accepted trust anchors and added certificates, as well
as to obtain the most recent STH and to fetch proofs [36, 37]. For example,
the add-chain endpoint returns an SCT if the added certificate chain ends in
a trust anchor returned by the get-roots endpoint. We use add-chain in
Section 6, as well as several other endpoints in Section 4 to fetch proofs and
STHs. It might be helpful to know that an inclusion proof is fetched based
on two parameters: a certificate hash and the tree size of an STH. The former
specifies the log entry of interest, and the latter with regards to which view
inclusion should be proven. The returned proof is valid if it can be used in
combination with the certificate to reconstruct the STH’s tree head.

The CT landscape provides a limited value unless it is verified that the
logs play by the rules. What the rules are changed over time, but they are
largely influenced by the major browser vendors that define CT policies. For
example, what is required to become a recognized CT log in terms of uptime
and trust anchors, and which criteria should pass to consider a certificate CT
compliant [3, 23]. While there are several ways that a log can misbehave with
regards to these policy aspects, the most fundamental forms of cheating are
omission and split-view attacks. A party that follows-up on inclusion and
consistency proofs is said to audit the logs.
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Widespread client-side auditing is a premise for CT logs to be untrusted,
but none of the web browsers that enforce CT engage in such activities yet.
For example, requesting an inclusion proof is privacy-invasive because it leaks
browsing patterns to the logs, and reporting suspected log misbehavior comes
with privacy [20] as well as operational challenges. Found log incidents are
mostly reported manually to the CT policy list [11]. This is in contrast
to automated CT monitors, which notify domain owners of newly issued
certificates based on what actually appeared in the public logs [12, 38].

2.2 Tor
Most of the activity of Tor’s millions of daily users starts with Tor Browser and
connects to some ordinary website via a circuit comprised of three randomly-
selected Tor relays. In this way no identifying information from Internet
protocols (such as IP address) are automatically provided to the destination,
and no single entity can observe both the source and destination of a con-
nection. Tor Browser is also configured and performs some filtering to resist
browser fingerprinting, and first party isolation to resist sharing state or link-
ing of identifiers across origins. More generally it avoids storing identifying
configuration and behavioral information to disk.

Tor relays in a circuit are selected at random, but not uniformly. A typical
circuit is comprised of a guard, a middle, and an exit. A guard is selected by a
client and used for several months as the entrance to all Tor circuits. If the guard
is not controlled by an adversary, that adversary will not find itself selected
to be on a Tor circuit adjacent to (thus identifying) the client. And because
some relay operators do not wish to act as the apparent Internet source for
connections to arbitrary destinations, relay operators can configure the ports
(if any) on which they will permit connections besides to other Tor relays.
Finally, to facilitate load balancing, relays are assigned a weight based on their
apparent capacity to carry traffic. In keeping with avoiding storing of linkable
state, even circuits that share an origin will only permit new connections over
that circuit for ten minutes. After that, if all connections are closed, all state
associated with the circuit is cleared.

Tor clients use this information when choosing relays with which to build
a circuit. They receive the information via an hourly updated consensus. The
consensus assigns weights as well as flags such as guard or exit. It also assigns
auxiliary flags such as stable, which, e.g., is necessary to obtain the guard flag
since guards must have good availability. Self-reported information by relays
in their extra-info document, such as statistics on their read and written bytes,
are also part of the consensus and uploaded to directory authorities. Directory
authorities determine the consensus by voting on various components making
up the shared view of the state of the Tor network. Making sure that all clients
have a consistent view of the network prevents epistemic attacks wherein
clients can be separated based on the routes that are consistent with their
understanding [15]. This is only a very rough sketch of Tor’s design and
operation. More details can be found by following links at Tor’s documentation



78 Paper III

site [62].
Tor does not aim to prevent end-to-end correlation attacks. An adversary

controlling the guard and exit, or controlling the destination and observing
the client ISP, etc., is assumed able to confirm who is connected to whom on
that particular circuit. The Tor threat model assumes an adversary able to
control and/or observe a small to moderate fraction of Tor relays measured
by both number of relays and by consensus weight, and it assumes a large
number of Tor clients able to, for example, flood individual relays to detect
traffic signatures of honest traffic on a given circuit [21]. Also, the adversary
can knock any small number of relays offline via either attacks from clients or
direct Internet DDoS.

3 Threat Model
We consider a strong attacker who is targeting all or a subset of users visiting
a particular website over Tor. It is generally difficult to perform a targeted
attack on a single particular Tor user because one needs to identify the user’s
connection before performing the attack—something that Tor’s anonymity
properties frustrate. However, it is not difficult to perform an attack on all or
a subset of unknown users of a particular service. A network vantage point
to perform such an attack is easily obtained by operating an exit relay (for a
subset of Tor users) or by compromising the network path of multiple exit
relays or the final destination. Once so positioned, the encrypted network
traffic can be intercepted using a fraudulent certificate and associated SCTs.
The subsequent attack on decrypted network traffic may be passive (to gather
user credentials or other information) or active. Typical examples of active
attacks are to change cryptocurrency addresses to redirect funds to the attacker
or to serve an exploit to the user’s browser for user deanonymization. Without
the ability to intercept encrypted traffic, these attacks become more difficult as
the web moves towards deprecating plaintext HTTP.

All of the components of such an attack have been seen in-the-wild nu-
merous times. Untargeted attacks on visitors of a particular website include
Syria’s interception of Facebook traffic using a self-signed 512-bit RSA key in
2011 [19], Iran’s interception of Bing and Google traffic using the DigiNotar
CA [35, 49], and the 2018 MyEtherWallet self-signed certificate that was used
as part of a BGP hijack [51]. The latter is also an example of redirecting routing
as part of an attack (either suspected or confirmed). Other examples of this
are Iran hijacking prefixes of Telegram (an encrypted messaging application)
in 2018 [47], another attack on cryptocurrency in 2014 this time targeting
unencrypted mining traffic [57], and hijacks that may have been intelligence-
gathering (or honest mistakes) including hijacks by Russian ISPs in 2017 and
China Telecom in 2018 and 2019 [66]. Finally, there are several examples of
law enforcement serving exploits to Tor Browser users to de-anonymize and
subsequently arrest individuals [28, 65].

With the attacker’s profile in mind, we consider someone that controls
a CA, enough CT logs to pass Tor Browser’s SCT-centric CT policy, some
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Tor clients, and a fraction of Tor relays. For example, it is possible to issue
certificates and SCTs, dishonor promises of public logging, present split-views
at will, intercept and delay traffic from controlled exit relays as well as CT logs,
and be partially present in the network. This includes a weaker attacker that
does not control CAs and CT logs, but who gained access to the relevant signing
keys [32, 41]. A modest fraction of CTor entities can be subject to DoS, but
not everyone at once and all the time. In other words, we consider the threat
model of Tor and Tor Browser as a starting point [16, 48]. Any attacker that
can reliably disrupt CT and/or Tor well beyond Tor’s threat model is therefore
not within ours.

Given that we are in the business of enforcing CT, the attacker needs to hide
mis-issued certificates and SCTs from entities that audit the CT log ecosystem.
As described in Section 2.1, this can either be achieved by omission or split-view
attacks. Our intended attacker is clearly powerful and may successfully issue a
certificate chain and associated SCTs without detection some of the time, but
a CA caught in mis-issuance or a CT log that violated an MMD promise will
no longer be regarded as trusted. Therefore, we assume a risk-averse attacker
that above a relatively low probability of detection would be deterred from
engaging in such activities. Note that the goal of detection is inherited from
CT’s threat model, which aims to remedy certificate mis-issuance after the fact;
not prevent it [35].

We identify and analyze specific attack vectors that follow from our threat
model and design as part of the security analysis in Section 5, namely, attack
vectors related to timing as well as relay flooding and tagging.

4 Design
A complete design—a design that detects misbehavior by both CAs and CT logs
within our strong threat model—requires a considerable degree of complexity.
In this section we present such a full design by breaking it up into four phases
as shown in Figure 1, demonstrating the need for the involved complexity in
each step. Section 6 presents two incremental versions of the full design that
are less complicated. The first increment comes as the cost of having a weaker
threat model and security goal. The second increment does not have a weaker
security goal but requires a new CT log API.

A design that starts by validating SCT signatures like Apple’s Safari is
promising and assumed [3, 67], but it does not stand up against a malicious CA
and two CT logs that work in concert. If the logs cannot be trusted blindly,
the presented SCTs need to be audited.

4.1 Phase 1: Submission
The least complicated auditing design would be one where Tor Browser receives
a TLS certificate and accompanying SCTs (we will refer to this bundle as an
SCT Feedback Object, or SFO for short) and talks to the corresponding logs,
over Tor, requesting an inclusion proof for each SCT. In an ordinary browser,
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Figure 1: An overview of the four phases of the full CTor design. In phase 1 Tor
Browser submits an SFO (SCT Feedback Object) to a Certificate Transparency
Relay (CTR), followed by phase 2 where the CTR buffers the SFO. In phase 3
the relay attempts to audit the SFO, and in case of failure, it reports the SFO
to an auditor with the help of a watchdog CTR in phase 4.

this would be an unacceptable privacy leak to the log of browsing behavior
associated with an IP address; performing this request over Tor hides the user’s
IP address but still leaks real-time browsing behavior.

An immediate problem with this design is that a primary requirement of
Tor Browser is to persist no data about browsing behavior after the application
exits. If we assume that browsers are not left running for long periods of time,
the inclusion proof request can be easily circumvented by the attacker by using
a fresh SCT whose MMD has not completed—thus no inclusion proof needs
to be provided (yet) by the log as per the CT standard. A second problem is
that the STH that an inclusion proof refers to exists in a trust vacuum: there is
no way to know that it is consistent with other STHs and not part of a split
view (assuming that there is no proactive STH gossip [14, 58], which is not
deployed).

We can evolve the design by adding two components: a list of STHs that
Tor Browser receives over a trusted channel and the participation of a trusted
third party with the ability to persist data and perform auditing actions at a
later point in time.

A single third party used by all users of Tor Browser would receive a
considerable aggregation of browsing behavior and would need to scale in-line
with the entire Tor network. A small number of auditors presents privacy and
single-point-of-failure concerns. A large number would be ideal but presents
difficulties in curation and independent management and still requires scaling
independent of the Tor network. These concerns do not entirely preclude the
design, but they can be easily avoided by reusing relays in the Tor network as our
trusted third parties: we call the relays so designated Certificate Transparency
Relays (CTRs).

Now, when the browser is completing the TLS handshake, it simultane-
ously either passes the SFO to a CTR (if the MMD of the SCT has not elapsed)
or queries the log itself for an inclusion proof to a trusted STH. However, if
we presume the attacker can serve an exploit to the browser, the latter behavior
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is immediately vulnerable. The log, upon receiving an inclusion proof request
for an SCT that it knows is malicious, can delay its response. The TLS connec-
tion in the browser, having succeeded, will progress to the HTTP request and
response, at which point the exploit will be served, and the SFO (containing
the cryptographic evidence of CA and log misbehavior) will be deleted by the
exploit code. While blocking the TLS connection until the CT log responds is
an option, experience related to OCSP hard-fail indicates that this notion is
likely doomed to fail [33].

The final change of the design has Tor Browser submit the SFO to the CTR
immediately upon receipt (with some probability) in all cases. A consequence
of this shift is that the trusted STH list no longer needs to be delivered to
the browser but rather the CTRs. To mitigate the risk of a browser exploit
being able to identify the CTR to the attacker (who could then target it), we
prepare CTR circuits ahead of time that are closed and discarded as soon as the
SFO is sent. This allows the SFO submission to race with the TLS connection
completion and HTTP request/response. An added detail is to block the TLS
connection in the case that an SFO is unusually large, as defined by a parameter
ct-large-sfo-size. A large SFO may indicate an attempt to win the race
between SFO submission and exploitation. The parameter can be set such that
it happens extremely rarely on legitimate connections, as shown in Section 7.

We summarize phase 1 with the following algorithm that provides more
explicit steps and details, including the addition of a parameter ct-submit-pr
that indicates a probability that an SFO is submitted to a CTR. This provides
probabilistic security while providing the ability to adjust submission rates to
account for CTR and more general network scaling/health issues. Given an
incoming SFO s , Tor Browser should:

1. Raise a certificate error and stop if the certificate chain of s is not rooted
in Tor Browser’s trust store.

2. Raise a certificate transparency error and stop if the SCTs of s fail Tor
Browser’s CT policy.

3. If len(s) < ct-large-sfo-size, accept s and conduct the remaining
steps in the backgroundwhile the TLS connection and subsequentHTTP
request/response proceed. If len(s) ≥ ct-large-sfo-size pause the
TLS handshake, complete the remaining steps, accept s as valid and then
continue the handshake.

4. Flip a biased coin based on ct-submit-pr and stop if the outcome
indicates no further auditing.

5. Submit s to a random CTR on a pre-built circuit. The circuit used for
submission is closed immediately without waiting for any acknowledg-
ment.
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4.2 Phase 2: Buffering
Once received, the most straightforward thing for a CTR to do would be to
contact the issuing log and request an inclusion proof relative to a trusted STH.
(And if the SCT’s MMD has not elapsed, hold the SFO until it has.) However,
this proposal has two flaws, the first of which leads us to the actual design of
phase 2.

Immediately contacting the log about an SFO (i) allows the log to predict
when exactly it will receive a request about an SFO and (ii) discloses real-time
browsing behavior to the log. The former problem means that an attacker
can position resources for perpetuating an attack ahead-of-time, as well as
letting it know with certainty whether a connection was audited (based on
ct-submit-pr). The latter is some amount of information leakage that can
help with real-time traffic analysis.

Because a CTR must support buffering SCTs regardless (due to the MMD),
we can schedule an event in the future for when each SFO should be audited.
Adding a per-SFO value sampled from ct-delay-dist effectively adds stop-
and-go mixing [30] to the privacy protection, but where there is only one mix
(CTR) between sender (client) and receiver (CT log). So there is no point in a
client-specified interval-start-time such that the mix drops messages arriving
before then, and there is no additional risk in having the interval end time set
by the mix rather than the sender. This means both that some SFOs a client
sends to a CTR at roughly the same time might be audited at different times
and that SFOs submitted to that CTR by other honest clients are more likely
to be mixed with these.

In addition to buffering SFOs for mixing effects, we also add a layer of
caching to reduce the storage overhead, prevent unnecessary log connections,
and limit the disclosure to logs. With regards to some CT circuit, an incoming
SFO s is processed as follows by a CTR:

1. Close the circuit to enforce one-time use.

2. Discard all SCTs in the SFO for logs the CTR is not aware of; if no SCT
remains then discard the SFO.

3. Stop if s is cached or already pending to be audited in the buffer. See
caching details in Section 7.2.

4. Sample a CT log l that issued a remaining SCT in s .

5. Compute an audit_after time t , see Figure 2.

6. Add (l , t, s) to a buffer of pending SFOs to audit.

What makes a CT log known to the CTR is part of the Tor consensus,
see Section 4.5. It implies knowledge of a trusted STH for the sampled CT
log l , which refers to an entity that (i) issued an SCT in the submitted SFO,
and (ii) will be challenged to prove inclusion in phase 3 sometime after the
audit_after timestamp t elapsed. We choose one SCT (and thus log) at
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1 : t← now() +MMD + random(ct-delay-dist)
2 : if SCT.timestamp +MMD < now() :
3 : t← now() + random(ct-delay-dist)

Figure 2: Algorithm that computes an audit_after timestamp t .

random from the SFO because it is sufficient to suspect only one misbehaving
log so long as we report the entire SFO, allowing us to identify the other
malicious CT logs later on (a risk averse-attacker would not conduct an attack
without controlling enough logs, i.e., one benign log would otherwise make
the mis-issued certificate public).

The audit_after timestamp specifies the earliest point in time that an
SCT from an SFO will be audited in phase 3, which adds random noise that
obfuscates real-time browsing patterns in the Tor network and complicates
predictions of when it is safe to assume no audit will take place. If memory
becomes a scarce resource, pending triplets should be deleted at random [46].
Figure 2 shows that t takes the log’s MMD into account. This prevents an early
signal to the issuing CT logs that an SFO is being audited. For example, if an
SFO is audited before the MMD elapsed, then the issuing CT log could simply
merge the underlying certificate chain to avoid any MMD violation. However,
by taking the MMD into account, this results in a relatively large time window
during which the attacker can attempt to flood all CTRs in hope that they
delete the omitted SFO at random before it is audited. We discuss the threat of
flooding further in Section 5, noting that such an attack can be detected if CTRs
publish two new metrics in the extra-info document: ct-receive-bytes and
ct-delete-bytes. These metrics indicate howmany SFO bytes were received
and deleted throughout different time intervals, which is similar to other extra-
info metrics such as read-history and write-history.

4.3 Phase 3: Auditing
As alluded to in phase 2, there is a second problem why the simple behavior of
“contact the log and request an inclusion proof” is unacceptable. We include the
ability to DoS an individual Tor relay in our threat model—if the log knows
which CTR holds the evidence of its misbehavior, it can take the CTR offline,
wiping the evidence of the log’s misbehavior from its memory.

We can address this concern in a few ways. The simple proposal of con-
tacting the log over a Tor circuit will not suffice: a log can tag each CTR by
submitting unique SFOs to them all, and recognize the CTR when they are
submitted (see Section 5). Even using a unique Tor circuit for each SFO might
not suffice to prevent effective tagging attacks. For example, after tagging all
CTRs, a malicious log could ignore all but innocuous untagged requests and
tagged requests matching tags for whichever CTR it decides to respond to first.
If some kind of back-off is supported (common to delay retransmissions and
avoid congestion), the rest of the CTRs will likely be in back-off so that there
is a high probability that the first CTR is the one fetching proofs. The log
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can repeat this process—alternating tagged CTRs it replies to—until it receives
the offending SFO from an identifiable CTR with high probability. CTRs
may report the log as inaccessible for days, but that is not the same as direct
cryptographic evidence of misbehavior.

While there are ways to detect this attack after-the-fact, and there may be
ways to mitigate it, a more robust design would tolerate the disclosure of a
CTRs identity to the log during the auditing phase without significant security
implications. A simple appealing approach is to write the data to disk prior
to contacting the log; however, Tor relays are explicitly designed not to write
data about user behavior to disk unless debug-level logging is enabled. Relay
operators have expressed an explicit desire to never have any user data persisted
to disk, as it changes the risk profile of their servers with regards to search,
seizure, and forensic analysis.

The final design is to have the CTR work with a partner CTR—we call it
a watchdog—that they choose at random and contact over a circuit. Prior to
attempting to fetch a proof from a log, the CTR provides the watchdog with
the SFO it is about to audit. After an appropriate response from the log, the
CTR tells the watchdog that the SFO has been adequately addressed.

In more detail, each CTR maintains a single shared circuit that is used to
interact with all CT logs known to the CTR (we are not using one circuit per
SFO given the overhead and unclear security benefit noted above). For each
such log l , the CTR runs the following steps:

1. Sample a delay d ← random(ct-backoff-dist) and wait until d time
units elapsed.

2. Connect to a random watchdog CTR.

3. For each pending buffer entry (l ′, s, t ), where l ′ = l and t <= now():

(a) Share s with the current watchdog.
(b) Challenge the log to prove inclusion to the closest STH in the Tor

consensus where t ≤ STH.timestamp. Wait ct-log-timeout
time units for the complete proof before timing out.
• On valid proof: send an acknowledgment to the watchdog,
cache s and then discard it.

• On any other outcome: close circuit to the watchdog CTR,
discard s , and go to step 1.

4.4 Phase 4: Reporting
At any given time, a CTR may be requesting inclusion proofs from logs and
act as a watchdog for one or more CTRs. A CTR acting as a watchdog will
have at most one SFO held temporarily for each other CTR it is interacting
with. If an acknowledgement from the other CTR is not received within
ct-watchdog-timeout, it becomes the watchdog’s responsibility to report
the SFO such that it culminates in human review if need be.
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Because human review and publication is critical at this end-stage, we
envision that thewatchdog (which is a Tor relay that cannot persist any evidence
to disk and may not be closely monitored by its operator) provides the SFO
to an independent CT auditor that is run by someone that closely monitors its
operation. When arriving at the design of the CTR being a role played by a Tor
relay, we eschewed separate auditors because of the lack of automatic scaling
with the Tor network, the considerable aggregation of browsing behavior
across the Tor network, and the difficulties of curation and validation of
trustworthy individuals. SFOs submitted to auditors at this stage have been
filtered through the CTR layer (that additionally backs-off if the logs become
unavailable to prevent an open pipe of SFOs from being reported), resulting
in an exponentially smaller load and data exposure for auditors. This should
allow for a smaller number of them to operate without needing to scale with
the network.

While we assume that most auditors are trusted to actually investigate the
reported SFOs further, the watchdog needs to take precautions talking to them
because the network is not trusted.2 The watchdog can contact the auditor
immediately, but must do so over an independent Tor circuit.3 If a successful ac-
knowledgement from the auditor is not receivedwithin ct-auditor-timeout,
the SFO is buffered for a random time using ct-delay-dist before being
reported to the same auditor again over a new independent Tor circuit.

When an auditor receives an SFO, it should persist it to durable storage
until it can be successfully resolved to a specific STH.4 Once so persisted, the
auditor can begin querying the log itself asking for an inclusion proof. If no
valid inclusion proof can be provided after some threshold of time, the auditor
software should raise the details to a human operator for investigation.

Separately, the auditor should be retrieving the current Tor consensus and
ensuring that a consistency proof can be provided between STHs from the
older consensus and the newer. If consistency cannot be established after
some threshold of time, the auditor software should raise the details to a
human operator for investigation. An auditor could also monitor a log’s
uptime and report on excessive downtime. Finally, it is paramount that the
auditor continuously monitors its own availability from fresh Tor-circuits by
submitting known SFOs to itself to ensure that an attacker is not keeping
watchdogs from connecting to it.

2While our threat model, and Tor’s, precludes a global network adversary, both include partial
control of the network.

3This is also important because CTRs are not necessarily exits, i.e., the exiting traffic must be
destined to another Tor relay.

4The fetched inclusion proofmust be against the first known STH that should have incorporated
the certificate in question by using the history of STHs in Tor’s consensus: the mis-issued certificate
might have been merged into the log reactively upon learning that a CTR reported the SFO, such
that a valid inclusion proof can be returned with regards to a more recent STH but not earlier
ones that actually captured the log’s misbehavior.
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4.5 Setup
There are a number of additional details missing to setup phases 1–4 for the de-
sign. Most of these details relate to the Tor consensus. Directory authorities in-
fluence the way in which Tor Browser and CTRs behave by voting on necessary
parameters, such as the probability of submission of an SFO (ct-submit-pr)
and the timeout used by CTRs when auditing CT logs (ct-log-timeout),
as introduced earlier as part of the design. See Appendix A for details on
these parameters and their values that were previously used. Next, we briefly
introduce a number of implicitly used parts from our design that should also
be part of the consensus.

In the consensus, the existing known-flags item determines the different
flags that the consensus might contain for relays. We add another flag named
CTR, which indicates that a Tor relay should support CT-auditing as described
here. A relay qualifies as a CTR if it is flagged as stable and not exit, to spare
the relatively sparse exit bandwidth and only use relays that can be expected
to stay online. Section 8 discusses trade-offs in the assignment of the CTR flag.

The consensus should also capture a fixed view of the CT log ecosystem
by publishing STHs from all known logs. A CT log is known if a majority of
directory authorities proposed a ct-log-info item, which contains a log’s ID,
public key, base URL, MMD, and most recent STH. Each directory authority
proposes its own STH, and agrees to use the most recent STH as determined by
timestamp and lexicographical order. Since CTRs verify inclusion with regards
to SCTs that Tor Browser accepts, the CT logs recognized by Tor Browser
must be in Tor’s consensus.

Tor’s directory authorities also majority-vote on ct-auditor items, which
pin base URLs and public keys of CT auditors that watchdogs contact in case
that any log misbehavior is suspected.

5 Security Analysis
We consider four types of impact for an attacker that conducted HTTPS-based
man-in-the-middle attacks on Tor Browser. Other than none, these impact
types are:

Minor the attack was detected due to some cover-up that involved network-
wide actions against CTor. This is likely hard to attribute to the actual
attacker, but nevertheless it draws much unwanted attention.

Significant the attack generated public cryptographic evidence that proves
CA misbehavior.

Catastrophic the attack generated public cryptographic evidence that proves
CT log misbehavior.

Our design leads to significant and catastrophic impact events, but does un-
fortunately not preclude minor ones. It is possible to overcome this shortcom-
ing at different trade-offs, e.g., by tuning CTor parameters reactively (phase 2
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below) or relying on different trust assumptions as in the incremental cross-
logging designs (Section 6).

Probability of Detection. Suppose the attacker mis-issued a certificate that
Tor Browser trusts, and that it is considered valid because it is accompanied by
enough SCTs from CT logs that the attacker controls. The resulting SFO is
then used to man-in-the-middle a single Tor Browser user, i.e., for the purpose
of our analysis we consider the most risk-averse scenario possible. Clearly, none
of the attacker’s CT logs plan to keep any promise of public logging: that
would trivially imply significant impact events. The risk of exposure is instead
bound by the probability that any of the four phases in our design fail to
propagate the mis-issued SFO to a pinned CT auditor that is benign.

Phase 1: Submission. The probability of detection cannot exceed the prob-
ability of submission (ct-submit-pr). We analyze the outcome of submitting
the mis-issued SFO from Tor Browser to a CTR. There are two cases to con-
sider, namely, the mis-issued SFO is either larger than ct-large-sfo-size
or it is not.

If the SFO is larger than ct-large-sfo-size, Tor Browser blocks until
the SFO is submitted and its CT circuit is closed. As such, it is impossible to
serve a Tor Browser exploit reactively over the man-in-the-middled connection
that shuts-down the submission procedure before it occurs. Assuming that
forensic traces in tor and Tor Browser are unreliable,5 the sampled CTR identity
also cannot be revealed with high certainty afterwards by compromising Tor
Browser. The attacker may know that the SFO is buffered by some CTR
based on timing, i.e., blocking-behavior could be measurable and distinct. The
important part is not to reveal which CTR received a submission: a single Tor
relay may be subject to DoS.

If the SFO is smaller or equal to ct-large-sfo-size there is a race be-
tween (i) the time it takes for Tor Browser to submit the SFO and close its CT
circuit against (ii) the time it takes for the attacker to compromise Tor Browser
and identify the CTR in question. It is more advantageous to try and win this
race rather than being in the unfruitful scenario above. Therefore, the attacker
would maximize the time it takes to perform (i) by sending an SFO that is
ct-large-sfo-size. Our design reduced the threat of an attacker that wins
this race by using pre-built CT circuits that are closed immediately after use.
This makes the attack surface narrow, limiting the number of reliable exploits
(if any).

Note that the attack surface could, in theory, be eliminated by setting
ct-large-sfo-size to zero. However, that is likely too costly in terms of
latency [33].

Phase 2: Buffering. The probability of detection cannot exceed 1− ( fctr +
fdos), where fctr is the fraction of malicious CTRs and fdos the fraction of
CTRs that suffer from DoS. We analyze the outcome of SFO reception at a
genuine CTR.

5“tor” (aka “little-t tor”) is the tor process Tor Browser uses to interact with the Tor network.
On marking a circuit as closed in tor, tor immediately schedules the associated data structures to
be freed as soon as possible.
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The time that an SFO is buffered depends on if the log’s MMD elapsed or
not. The earliest point in time that a newly issued SCT can be audited (and
the log is expected to respond) is an MMD later, whereas the normal buffer
time is otherwise only governed by smaller randomness in the audit_after
timestamp (minutes). A rational attacker would therefore maximize the buffer
time by using a newly issued SCT, resulting in an attack window that is at least
24 hours for today’s CT logs [23].

Following from Tor’s threat model, the mis-issued SFO must be stored in
volatile memory and not to disk. Two risks emerge due to large buffer times:
the CTR in question might be restarted by the operator independently of the
attacker’s mis-issued SFO being buffered, and given enough time the attacker
might find a way to cause the evidence to be deleted. While a risk-averse
attacker cannot rely on the former to avoid detection, we emphasize that the
CTR criteria must include the stable flag to reduce the probability of this
occurring.

The latter is more difficult to evaluate. It depends on the attacker’s knowl-
edge as well as capabilities. Phase 1 ensured that the attacker does not know
which CTR to target. As such, any attempt to intervene needs to target all CTRs.
While a network-wide DoS against Tor would be effective, it is not within our
threat model. A less intrusive type of DoS would be to flood CTRs by submit-
ting massive amounts of SFOs: just enough to make memory a scarce resource,
but without making Tor unavailable. This could potentially flush a target SFO
from the CTR’s finite memory, following from the delete-at-random strategy
in Section 4.2. Assuming that a CTR has at most 1 GiB of memory available
for SFOs (conservative and in favour of the attacker), Appendix C shows that
the attacker’s flood must involve at least 2.3 GiB per CTR to accomplish a
90% success certainty. This means that it takes 7.9–39.3 minutes if the relay
bandwidth is between 8–40 Mbps. So it is impractical to flush all CTRs within
a few minutes, and hours are needed not to make everyone unavailable at once.

The CTR criteria set in Section 4.5 matches over 4000 Tor relays [64].
A network-wide flush that succeeds with 90% certainty therefore involves
8.99 TiB. It might sound daunting at first, but distributed throughout an
entire day it only requires 0.91 Gbps. Such an attack is within our threat
model because it does not make Tor unavailable. Notably the ballpark of these
numbers do not change to any significant degree by assuming larger success
probabilities, e.g., a 99% probability only doubles the overhead. Further, the
needed bandwidth scales linearly with the assumed memory of CTRs. This
makes it difficult to rely on the finite volatile memory of CTRs to mitigate
network-wide flushes. As described in Section 4.2, we ensure that flushes
are detected by publishing the number of received and deleted SFO bytes
throughout different time intervals as extra-info.

Once detected, there are several possible reactions that decrease the like-
lihood of a minor impact scenario. For example, Tor’s directory authorities
could lower MMDs to, say, 30 minutes, so that the SFO is reported to an audi-
tor before it is flushed with high probability. This has the benefit of implying
significant impact because the mis-issued certificate is detected, but also the
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drawback of allowing the logs to merge the certificate before there is any MMD
violation to speak of. The most appropriate response depends on the exact
attack scenario and which trade-offs one is willing to accept.

Phase 3: Auditing. By the time an SFO enters the audit phase, the log
in question is expected to respond with a valid inclusion proof. There is no
such proof if the log violated its MMD, and it is too late to create a split-view
that merged the certificate in time because the CTR’s view is already fixed
by an STH in the Tor consensus that captured the log’s misbehavior. In fact,
creating any split-view within Tor is impractical because it requires that the
consensus is forged or that nobody ever checks whether the trusted STHs
are consistent. This leaves two options: the attacker either responds to the
query with an invalid inclusion proof or not at all. The former is immediately
detected and starts phase 4, whereas the latter forces the CTR to wait for
ct-watchdog-timeout to trigger (which is a few seconds to avoid premature
auditor reports). A rational attacker prefers the second option to gain time.

Clearly, the attacker knows that some CTR holds evidence of log misbe-
havior as it is being audited. The relevant question is whether the exact CTR
identity can be inferred, in which case the attacker could knock it offline (DoS).
Motivated by the threat of tagging, where the attacker sends unique SFOs to
all CTRs so that their identities are revealed once queried for, we erred on the
safe side and built watchdogs into our design: it is already too late to DoS the
querying CTR because the evidence is already replicated somewhere else, ready
to be reported unless there is a timely acknowledgement. The attacker would
have to break into an arbitrary CTR within seconds to cancel the watchdog,
which cannot be identified later on (same premise as the sampled CTR in
phase 1). Such an attacker is not in Tor’s threat model.

Phase 4: Reporting. At this stage the process of reporting the mis-issued
SFO to a random CT auditor is initiated. Clearly, the probability of detec-
tion cannot exceed 1 − fauditor, where fauditor is the fraction of malicious CT
auditors. Fixating the sampled CT auditor is important to avoid the threat of
an eventually successful report only if it is destined to the attacker’s auditor
because our attacker is partially present in the network. Gaining time at this
stage is of limited help because the CTR identity is unknown as noted above,
and it remains the case throughout phase 4 due to reporting on independent
Tor circuits (and independently of if other SFO reports succeeded or not).
Without an identifiable watchdog, the attacker needs a network-wide attack
that is already more likely to succeed in the buffer phase.

6 Incremental Deployment
Section 4 covered the full design that places zero-trust in the CT landscape
by challenging the logs to prove certificate inclusion with regards to trusted
STHs in the Tor consensus. If no such proof can be provided, the suspected
evidence of log misbehavior is reported to a trusted CT auditor that follows-up
on the incident, which involves human intervention if an issue persists. The
proposed design modifies the Tor consensus, Tor relays, and Tor Browser. It
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Figure 3: Incremental design that can be deployed without any trusted CT
auditors. Tor Browser still submits SFOs to CTRs on independent Tor circuits
for the sake of privacy and security. After CTR buffering, the submitted
certificates are cross-logged by adding them to independent CT logs (selected at
random) that the attacker does not control (inferred from accompanied SCTs).

also requires development and operation of a trusted auditor infrastructure.
The current lack of the latter makes it unlikely that we will see adoption of
CTor in its full potential anytime soon, and begs the question of increments
that help us get there in the future. Therefore, we additionally propose two
incremental designs in this section.

Without the ability to rely on CT auditors, trust needs to be shifted else-
where because we cannot expect relay operators to take on the role. At the
same time, an incremental proposal needs to improve upon the status quo of
pairwise-independently trusted CT logs. These observations lead us towards
the trust assumption that at least some of the CT logs are trustworthy. Such an
assumption is suboptimal, but it does provide a real-world security improve-
ment by significantly raising the bar from weakest-link(s) to quite the opposite.

The smallest change of the full design would be for watchdogs to report
suspected certificate mis-issuance to all CT logs, simply by using the public
add-chain API to make the SFO’s certificate chain transparent. This has the
benefit of holding the CA accountable if some log operator is benign. Given
that our attacker is risk-averse, reporting to a single independent log6 that
issued none of the accompanied SCTs would likely be sufficient. There is also
room for further simplification: there is no point in challenging the logs to
prove inclusion if the fallback behavior of no response only makes the issued
certificate public, not the associated SCTs. Thus, CTRs could opt to cross-log
immediately without ever distinguishing between certificates that are benign and
possibly fraudulent. This results in the incremental design shown in Figure 3,
which initially removes several system complexities such as extra-info metrics,
auditor infrastructure, watchdog collaborations, and inclusion proof fetching
against trusted STHs in Tor’s consensus.

The drawback of certificate cross-logging is that the misbehaving CT logs
cannot be exposed. There is also a discrepancy between cross-logging and
encouraging the CT landscape to deploy reliable CT auditors. We therefore

6The independent log need not be trusted by the browser, i.e., it could be specified separately
in the Tor consensus. An operator that runs such a log would help distribute trust and facilitate
auditing. Appendix B provides details on today’s log ecosystem.
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suggest a minimal change to the basic cross-logging design that addresses both of
these concerns. This change is unfortunately to the API of CT logs and not Tor.
The proposed change is to allow cross-logging of a certificate’s issued SCTs, e.g.,
in the form of an add-sfoAPI that would replace add-chain in Figure 3. This
means that CTRs could expose both the mis-issued certificate and the logs that
violated their promises of public logging. At the same time, the infrastructural
part of a CT auditor is built directly into existing CT logs: accepting SFOs that
need further investigation. Such an API would be an ecosystem improvement
in itself, providing a well-defined place to report suspected log misbehavior
on-the-fly casually, i.e., without first trying to resolve an SFO for an extended
time period from many different vantage points and then ultimately reporting
it manually on the CT policy mailing list.

Security Sketch. There are no changes to phase 1 because cross-logging is
instantiated at CTRs. Phases 3–4 are now merged, such that the encountered
certificates are added to independent CT logs that the attacker does/may not
control. Watchdogs are no longer needed since either the certificates are added
to a log that the attacker controls, or they are not (which makes them public).
The other main difference takes place in phase 2, during which CTRs buffer
SFOs. The buffer time used to be lengthy due to taking early signals and
MMDs into account, but it is now irrelevant as no inclusion proofs are fetched.
The expected buffer time can therefore be shortened down to minutes that
follow only from the randomness in the audit_after timestamp (for the sake
of privacy), making network-wide flushes impractical while at the same time
reducing the time that a mis-issued certificate stays unnoticed: a benign log is
likely to add an entry before all MMDs elapsed.

The extended cross-logging also aims to expose log misbehavior. As such, it
is paramount that no cross-logged SFO becomes public before the issuing CT
logs can merge the mis-issued certificate reactively to avoid catastrophic impact.
This could be assured by buffering newly issued SFOs longer as in the full
design, which brings back the threat and complexity of minor impact scenarios.
Another option that is appealing for Tor (but less so for CT) is to operate the
add-sfo API with the expectation of delayed merges that account for MMDs
before making an SFO public, effectively moving lengthy buffering from CTRs
to CT logs with persistent storage. Trillian-based CT logs already support
delayed merges of (pre)certificates, see sequencer_guard_window [26].

7 Performance
The following analysis shows that CTor’s overhead is modest based on com-
puting performance estimates from concrete parameter properties and two
public data sets.

7.1 Setup
Mani et al. derived a distribution of website visits over Tor and an estimation
of the number of circuits through the network [40]. We use their results
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to reason about overhead as the Tor network is under heavy load, assuming
140 million daily website visits (the upper bound of a 95% confidence interval).
Our analysis also requires a distribution that captures typical SFO properties
per website visit. Therefore, we collected an SFO data set by browsing the most
popular webpages submitted to Reddit (r/frontpage, all time) on December 4,
2019. The data set contains SFOs from 8858 webpage visits, and it is available
online as an open access artifact together with the associated scripts [13].
Notably we hypothesized that browsing actual webpages as opposed to front-
pages would yield more SFOs. When compared to Alexa’s list it turned out to
be the case: our data set has roughly two additional SFOs per data point. This
makes it less likely that our analysis is an underestimate.

We found that an average certificate chain is 5440 bytes, and it is seldom
accompanied by more than a few SCTs. As such, a typical SFO is in the order
of 6 KiB. No certificate chain exceeded 20 KiB, and the average number of
SFOs per webpage was seven. The latter includes 1–2 SFOs per data point that
followed from our client software calling home on start-up (Chromium 77).

We assume no abnormal CTor behavior, which means that there will be
little or no CTR back-offs due to the high uptime requirements of today’s CT
logs: 99%. We set ct-large-sfo-size conservatively to avoid blocking in
the TLS handshake (e.g., 20 KiB), and use a 10% submission probability as well
as a 10 minute random buffer delay on average. It is likely unwarranted to use
a higher submission probability given that the intended attacker is risk-averse.
Shorter buffer times would leak finer-grained browsing patterns to the logs,
while longer ones increase the attack surface in phase 2. Therefore, we selected
an average for ct-delay-dist that satisfies none of the two extremes. The
remaining CTor parameters are timeouts, which have little or no performance
impact if set conservatively (few seconds).

7.2 Estimates
The incremental cross-logging designs are analyzed first without any caching.
Caching is then considered, followed by overhead that appears only in the full
design.

Circuit Overhead. Equation 1 shows the expected circuit overhead from
Tor Browser over time, where p is the submit probability and d̄ the average
number of SFOs per website visit. The involved overhead is linear as either of
the two parameters are tuned up or down.

pd̄ (1)

Using p ← 1
10 and our approximated SFO distribution d̄ ← 7 yields

an average circuit overhead of 0.70, i.e., for every three Tor Browser circuits
CTor adds another two. Such an increase might sound daunting at first,7 but

7Circuit establishment involves queueing of onionskins [61] and it is a likely bottleneck, but
since the introduction of ntor it is not a scarce resource so such overhead is acceptable if it (i)
serves a purpose, and (ii) can be tuned. Confirmed by Tor developers.
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these additional circuits are short-lived and light-weight; transporting 6 KiB on
average. Each CTR also maintains a long-lived circuit for CT log interactions.

Bandwidth Overhead. Equation 2 shows the expected bandwidth over-
head for the Tor network over time, where V is the number of website visits
per time unit, p the submit probability, d̄ the average number of SFOs per
website visit, and s̄ the average SFO byte-size.

6V pd̄ s̄ (2)

V pd̄ is the average number of SFO submissions per time unit, which can be
converted to bandwidth by weighting each submission with the size of a typical
SFO and accounting for it being relayed six times: three hops from Tor Browser
to a CTR, then another three hops from the CTR to a CT log (we assumed
symmetric Tor relay bandwidth). Using V ← 140 M/day, p ← 1

10 , d̄ ← 7,
s̄ ← 6 KiB and converting the result to bps yields 334.5 Mbps in total. Such
order of overhead is small when compared to Tor’s capacity: 450 Gbps [60].

Memory Overhead. Equation 3 shows the expected buffering overhead,
where Vm is the number of website visits per minute, t the average buffer time
in minutes, R the number of Tor relays that qualify as CTRs, and s̄ the typical
SFO size in bytes.

Vm t
R

s̄ (3)

Vm t represent incoming SFO submissions during the average buffer time,
which are randomly distributed across R CTRs. Combined, this yields the
expected number of SFOs that await at a single CTR in phase 2, and by taking
the byte-size of these SFOs into account we get an estimate of the resulting
memory overhead. Using Vm ← 140 M

24·60 , t ← 10 m, R ← 4000 based on the
CTR criteria in Section 4.5, and s̄ ← 6 KiB yields 1.42 MiB. Such order of
overhead is small when compared to the recommended relay configuration: at
least 512 MiB [63].

A cache of processed SFOs reduces the CTR’s buffering memory and log
interactions proportionally to the cache hit ratio. Mani et al. showed that if the
overrepresented torproject.org is removed, about one third of all website
visits over Tor can be attributed to Alexa’s top-1k and another one third to
the top-1M [40]. Assuming 32 byte cryptographic hashes and seven SFOs per
website visit, a cache hit ratio of 1

3 could be achieved by a 256 KiB LFU/LRU
cache that eventually captures Alexa’s top-1k. Given that the cache requires
memory as well, this is mainly a bandwidth optimization.

Full Design. For each CTR and CT log pair, there is an additional watch-
dog circuit that transports the full SFO upfront before fetching an inclusion
proof. The expected bandwidth overhead is at most 9V pd̄ s̄ , i.e., now also
accounting for the three additional hops that an SFO is subject to. In practise
the overhead is slightly less, because an inclusion query and its returned proof
is smaller than an SFO. We expect little or no watchdog-to-auditor overhead
if the logs are available, and otherwise one light-weight circuit that reports
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a single SFO for each CTR that goes into back-off. Such overhead is small
when compared to all Tor Browser submissions. Finally, the required memory
increases because newly issued SFOs are buffered for at least an MMD. Only a
small portion of SFOs are newly issued, however: the short-lived certificates
of Let’s Encrypt are valid for 90 days [1], which is in contrast to 24 hour
MMDs [23].

8 Privacy
There is an inherent privacy problem in the setting due to how CT is designed
and deployed. A browser, like Tor Browser, that wishes to validate that SFOs
presented to it are consistent and included in CT logs must directly or indirectly
interact with CT logs wrt. its observed SFOs. Without protections like Private
Information Retrieval (PIR) [7] that require server-side support or introduction
of additional parties and trust assumptions [29, 39], exposing SFOs to any
party risks leaking (partial) information about the browsing activities of the
user.

Given the constraints of the existing CT ecosystem, CTor is made privacy-
preserving thanks to the distributed nature of Tor with its anonymity proper-
ties and high-uptime relays that make up the Tor network. First, all communi-
cation between Tor Browser, CTRs, CT logs, and auditors are made over full
Tor-circuits. This is a significant privacy-gain, not available, e.g., to browsers
like Chrome that in their communications would reveal their public IP-address
(among a number of other potentially identifying metadata). Secondly, the use
of CTRs as intermediaries probabilistically delays the interaction with the CT
logs—making correlating Tor Browser user browsing with CT log interaction
harder for attackers—and safely maintains a dynamic cache of the most com-
monly already verified SFOs. While browsers like Chrome could maintain
a cache, Tor Browser’s security and privacy goals (Section 2.2) prohibit such
shared (persisted) dynamic state.

In terms of privacy, the main limitation of CTor is that CTor continuously
leaks to CT logs—and to a lesser extent auditors (depending on design)—a
fraction of certificates of websites visited using Tor Browser to those that
operate CT logs. This provides to a CT log a partial list of websites visited
via the Tor network over a period of time (determined by ct-delay-dist),
together with some indication of distribution based on the number of active
CTRs. It does not, however, provide even pseudonymously any information
about which sites individual users visit, much less withwhich patterns or timing.
As such it leaks significantly less information than does OCSP validation by
Tor Browser or DNS resolution at exit-relays [27], both of which indicate visit
activity in real time to a small number of entities.

Another significant limitation is that relays with the CTR flag learn real-
time browser behavior of Tor users. Relays without the exit flag primarily
only transport encrypted Tor-traffic between clients and other relays, never
to destinations. If such relays are given the CTR flag—as we stated in the
full design, see Section 4.5—then this might discourage some from running
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Tor relays unless it is possible to opt out. Another option is to give the CTR
flag only to exit relays, but this might be undesirable for overall network
performance despite the modest overhead of CTor (Section 7). Depending
on the health of the network and the exact incremental deployment of CTor,
there are different trade-offs.

9 Related Work
The status quo is to consider a certificate CT compliant if it is accompanied
by two independent SCTs [23, 67]. Therefore we proposed that Tor Browser
should do the same, but unlike any other CT-enforcing web browser CTor also
provides concrete next steps that relax the centralized trust which is otherwise
misplaced in CT logs [41, 50, 52, 53]. Several proposals surfaced that aim to
do better with regards to omissions and split-views.

Laurie proposed that inclusion proofs could be fetched over DNS to avoid
additional privacy leaks, i.e., a user’s browsing patterns are already exposed
to the DNS resolver but not the logs in the CT landscape [34]. CT/bis
provides the option of serving stapled inclusion proofs as part of the TLS
handshake in an extension, an OCSP response, or the certificate itself [37].
Lueks and Goldberg proposed that a separate database of inclusion proofs
could be maintained that supports information-theoretic PIR [39]. Kales et al.
improved scalability by reducing the size of each entry in the PIR database
at the cost of transforming logs into multi-tier Merkle trees, and additionally
showed how the upper tier could be expressed as a two-server computational
PIR database to ensure that any inclusion proof can be computed privately
on-the-fly [29]. Nordberg et al. avoid inclusion proof fetching by hanging on
to presented SFOs, handing them back to the same origin at a later time [46].
In contrast, CTor protects the user’s privacy without any persistent browser
state by submitting SFOs on independent Tor circuits to CTRs, which in turn
add random noise before there is any log interaction. The use of CTRs enable
caching similar to CT-over-DNS, but it does not put the logs in the dark like
PIR could.

Inclusion proofs are only meaningful if everyone observes the same consis-
tent STHs. One option is to configure client software with a list of entities that
they should gossip with, e.g., CT monitors [6], or, browser vendors could push
a verified view [54]. Such trusted auditor relationships may work for some
but not others [46]. Chuat et al. proposed that HTTPS clients and HTTPS
servers could pool STHs and consistency proofs, which are gossiped on website
visits [8]. Nordberg et al. suggested a similar variant, reducing the risk of user
tracking by pooling fewer and recent STHs [46]. Dahlberg et al. noted that such
privacy-insensitive STHs need not be encrypted, which could enable network
operators to use programmable data planes to provide gossip as-a-service [14].
Syta et al. proposed an alternative to reactive gossip mechanisms by showing
how an STH can be cosigned efficiently bymany independent witnesses [58]. A
smaller-scale version of witness cosigning could be instantiated by cross-logging
STHs in other CT logs [25], or in other append-only ledgers [59]. CTor’s full
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design (Section 4) ensures that anyone connected to the Tor network is on the
same view by making STHs public in the Tor consensus. In contrast, the first
incremental design (Section 6) is not concerned with catching log misbehavior,
while the second incremental design (also Section 6) exposes misbehaving logs
without first trying to fetch inclusion proofs.

Nordberg proposed that Tor clients could enforce public logging of con-
sensus documents and votes [45]. Such an initiative is mostly orthogonal to
CTor, as it strengthens the assumption of a secure Tor consensus by enabling
detection of compromised signing keys rather than mis-issued TLS certificates.
Winter et al. proposed that Tor Browser could check self-signed TLS certificates
for exact matches on independent Tor circuits [68]. Alicherry et al. proposed
that any web browser could double-check TLS certificates on first encounter
using alternative paths and Tor, again, looking for certificate mismatches and
generating warnings of possible man-in-the-middle attacks [2]. The submission
phase in CTor is similar to double-checking, except that there are normally no
TLS handshake blocking, browser warnings, or strict assumptions regarding
the attacker’s location.

In parallel Stark and Thompson proposed that Chrome could submit a
random subset of encountered SCTs to a trusted auditor that Google runs [56].
CTor also propagates a random subset of SCTs to a trusted auditor, but does
so while preserving privacy because of and how Tor is used. Meiklejohn
additionally proposed witness cosigning on-top of consistent STHs [42]. CTor
adds signatures on-top of STHs too, but only as part of the Tor consensus that
directory authorities sign.

10 Conclusion
We proposed CTor, a privacy-preserving and incrementally-deployable design
that brings CT to Tor. Tor Browser should start by taking the same proac-
tive security measures as Google Chrome and Apple’s Safari: require that a
certificate is only valid if accompanied by at least two SCTs. Such CT en-
forcement narrows down the attack surface from the weakest-link security
of the CA ecosystem to a relatively small number of trusted log operators
without negatively impacting the user experience to an unacceptable degree. The
problem is that a powerful attacker may gain control of the required logs,
trivially circumventing enforcement without significant risk of exposure. If
deployed incrementally, CTor relaxes the currently deployed trust assumption
by distributing it across all CT logs. If the full design is put into operation,
such trust is completely eliminated.

CTor repurposes Tor relays to ensure that today’s trust in CT logs is not
misplaced: Tor Browser probabilistically submits the encountered certificates
and SCTs to Tor relays, which cross-log them into independent CT logs (in-
cremental design) or request inclusion proofs with regards to a single fixed
view (full design). It turns out that delegating verification to a party that can
defer it is paramount in our setting, both for privacy and security. Tor and
the wider web would greatly benefit from each design increment. The full
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design turns Tor into a system for maintaining a probabilistically-verified view
of the entire CT log ecosystem, provided in Tor’s consensus for anyone to use
as a basis of trust. The idea to cross-log certificates and SCTs further showcase
how certificate mis-issuance and suspected log misbehavior could be disclosed
casually without any manual intervention by using the log ecosystem against
the attacker.

The attacker’s best bet to break CTor involves any of the following: operat-
ing significant parts of the CTor infrastructure, spending a reliable Tor Browser
zero-day that escalates privileges within a tiny time window, or targeting all Tor
relays in an attempt to delete any evidence of certificate mis-issuance and log
misbehavior. The latter—a so-called network-wide flush—brings us to the bor-
der of our threat model, but it cannot be ignored due to the powerful attacker
that we consider. Therefore, CTor is designed so that Tor can adapt in response
to interference. For example, in Tor Browser the ct-large-sfo-size could
be set reactively such that all SFOs must be sent to a CTR before accepting any
HTTPS application-layer data to counter zero-days, and the submit probability
ct-submit-pr could be increased if ongoing attacks are suspected. When it
comes to the storage phase, the consensus can minimize or maximize the stor-
age time by tuning a log’s MMD in the ct-log-info item. The distribution
that adds random buffering delays could also be updated, as well as log operator
relationships during the auditing phase.
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A Detailed Consensus Parameters
Below, the value of an item is computed as the median of all votes.

ct-submit-pr: A floating-point in [0, 1] that determines Tor Browser’s submis-
sion probability. For example, 0 disables submissions while 0.10 means
that every 10th SFO is sent to a random CTR on average.

ct-large-sfo-size: A natural number that determines how many wire-bytes a
normal SFO should not exceed. As outlined in Section 4.1, excessively
large SFOs are subject to stricter verification criteria.

ct-log-timeout: A natural number that determines how long a CTR waits
before concluding that a CT log is unresponsive, e.g., 5 seconds. As
outlined in Section 4.3, a timeout causes the watchdog to send an SFO
to the auditor.

ct-delay-dist: A distribution that determines how long a CTR should wait at
minimum before auditing a submitted SFO. As outlined in Section 4.2,
random noise is added, e.g., on the order of minutes to an hour.

ct-backoff-dist: A distribution that determines how long a CTR should wait
between two auditing instances, e.g., a few minutes on average. As
outlined in Section 4.3, CTRs audit pending SFOs in batches at random
time intervals to spread out log overhead.

ct-watchdog-timeout: A natural number that determines how long time at
most a watchdog waits before considering an SFO for reporting. Prevents
the watchdog from having to wait for a circuit timeout caused by an
unresponsive CTR. Should be set with ct-backoff-dist in mind.

ct-auditor-timeout A natural number that determines how long time at most
a watchdog waits for an auditor to acknowledge the submission of an
SFO.

B Log Operators & Trust Anchors
The standardized CT protocol suggests that a log’s trust anchors should “use-
fully be the union of root certificates trusted by major browser vendors” [36,
37]. Apple further claims that a log in their CT program “must trust all root
CA certificates included in Apple’s trust store” [3]. This bodes well for the
incremental CTor designs: we assumed that the existence of independent log
operators implies the ability to at least add certificate chains and possibly com-
plete SFOs into logs that the attacker does not control. Google’s CT policy
currently qualifies 36 logs that are hosted by Cloudflare, DigiCert, Google,
Let’s Encrypt, Sectigo, and TrustAsia [23]. No log accepts all roots, but the
overlap between root certificates that are trusted by major browser vendors
and CT logs increased over time [31]. This trend would likely continue if
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there are user agents that benefit from it, e.g., Tor Browser. Despite relatively
few log operators and an incomplete root coverage, the basic and extended
cross-logging in CTor still provide significant value as is:

• Even if there are no independent logs available for a certificate issued
by some CA, adding it again to the same logs would come with practical
security gains. For example, if the attacker gained access to the secret
signing keys but not the logs’ infrastructures the mis-issued certificate
trivially makes it into the public. If the full SFO is added, the log
operators could also notice that they were compromised.

• Most log operators only exclude a small fraction of widely accepted
root certificates: 1–5% [31]. This narrows down the possible CAs that
the attacker must control by 1–2 orders of magnitude. In other words,
to be entirely sure that CTor would (re)add a mis-issued SFO to the
attacker-controlled CT logs, this smaller group of CAs must issue the
underlying certificate. It is likely harder to take control of Let’s Encrypt
which some logs and operators exclude due to the sheer volume of issued
certificates than, say, a smaller CA that law enforcement may coerce.

Browser-qualified or not, the availability of independent logs that accept
the commonly accepted root certificates provides significant ecosystem value.
Log misbehavior is mostly reported through the CT policy mailing list. Thus,
it requires manual intervention. Wide support of certificate chain and SCT
cross-logging allows anyone to casually disclose suspected log misbehavior on-
the-fly.

C Flushing a Single CTR
Let n be the number of SFOs that a CTR can store in its buffer. The probability
to sample a target SFO is thus 1

n , and the probability to not sample a target SFO
is q = 1 − 1

n . The probability to not sample a target SFO after k submissions
is qk . Thus, the probability to sample the relevant buffer index at least once is
p = 1 − qk . Solving for k we get: k =

log(1−p )
log(q ) . Substituting q for 1 − 1

n yields
Equation 4, which can be used to compute the number of SFO submissions that
the attacker needs to flush a buffer of n > 2 entries with some probability p ∈
[0, 1).

k =
log(1 − p)
log(1 − 1

n )
(4)

It is recommended that a non-exit relay should have at least 512MB of
memory. If the available bandwidth exceeds 40Mbps, it should have at least
1GB [63]. Given that these recommendations are lower bounds, suppose the
average memory available to store SFOs is 1GiB. Section 7 further showed
that the average SFO size is roughly 6KiB. This means that the buffer capacity
is n ← 174763 SFOs. Plugging it into Equation 4 for p ← 9

10 , the attacker’s
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flood must involve k ← 402406 submissions. In other words, 2.3GiB must be
transmitted to flush a single CTR with 90% success probability.

As a corner case and implementation detail it is important that Tor Browser
and CTRs reject SFOs that are bogus in terms of size: it is a trivial DoS vector
to load data indefinitely. If such a threshold is added the required flushing
bandwidth is still 2.3GiB (e.g., use 1MiB SFOs in the above computations).
What can be said about bandwidth and potential adversarial advantages is that
a submitted SFO yields amplification: twofold for cross-logging, and slightly
more for proof-fetching as the SFO is pushed up-front to a watchdog. Note
that such amplification is smaller than a typical website visit.





IVPaper

Reprinted from

Sauteed Onions: Transparent
Associations from Domain
Names to Onion Addresses

WPES (2022)





Sauteed Onions: Transparent Associations from
Domain Names to Onion Addresses

Rasmus Dahlberg, Paul Syverson, Linus Nordberg, and Matthew Finkel

Abstract

Onion addresses offer valuable features such as lookup and routing secu-
rity, self-authenticated connections, and censorship resistance. Therefore,
many websites are also available as onionsites in Tor. The way registered
domains and onion addresses are associated is however a weak link. We
introduce sauteed onions, transparent associations from domain names to
onion addresses. Our approach relies on TLS certificates to establish onion
associations. It is much like today’s onion location which relies on Cer-
tificate Authorities (CAs) due to its HTTPS requirement, but has the
added benefit of becoming public for everyone to see in Certificate Trans-
parency (CT) logs. We propose and prototype two uses of sauteed onions:
certificate-based onion location and search engines that use CT logs as the
underlying database. The achieved goals are consistency of available onion
associations, whichmitigates attacks where users are partitioned depending
on which onion addresses they are given, forward censorship-resistance after
a TLS site has been configured once, and improved third-party discovery
of onion associations, which requires less trust while easily scaling to all
onionsites that opt-in.

1 Introduction
Onion addresses are domain names with many useful properties. For example,
an onion address is self-authenticated due to encoding its own public key. It
also makes integral use of the anonymity network Tor to provide secure and
private lookups as well as routing [12]. A major usability concern is that onion
addresses are random-looking strings; they are difficult to discover, update, and
remember [49]. Existing solutions approach these limitations in different ways,
e.g., ranging from setting onion addresses in HTTP headers over HTTPS with
so-called onion location [33] and bookmarking found results to making use
of manually curated third-party lists [27, 34, 41] as well as search engines like
DuckDuckGo or ahmia.fi [31, 49].
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Herein we refer to the unidirectional association from a domain name to an
onion address as an onion association. The overall goal is to facilitate transparent
discovery of onion associations. To achieve this we rely on the observation that
today’s onion location can be implemented in certificates issued by Certificate
Authorities (CAs). This is not an additional dependency because onion location
already requires HTTPS [33]. The main benefit of transitioning from HTTP
headers to TLS certificates is that all such onion associations become signed
and sequenced in tamper-evident Certificate Transparency (CT) logs [21, 22],
further tightening the relation between CAs and onion keys [35, 36, 46] as
well as public CT logging and Tor [11, 27].

Our first contribution is to make onion associations identical for all Tor
users, and otherwise the possibility of inconsistencies becomes public via CT.
Consistency of available onion associations mitigates the threat of users being
partitioned without anyone noticing into subsets according to which onion
address they received during onion association. Our second contribution is to
construct a search engine that allows Tor users to look up onion associations
without having to trust the service provider completely. Other than being
helpful to validate onion addresses as authentic [49], such discovery can con-
tinue to work after a TLS site becomes censored.

Section 2 briefly covers CT preliminaries. Section 3 describes sauteed onions,
an approach that makes discovery of onion associations more transparent
and censorship-resistant compared to today. Section 4 discusses related work.
Section 5 concludes the paper. Appendix A contains query examples for
our search engine. Appendix B outlines an example setup. All artifacts are
online [4].

2 Certificate Logging Preliminaries
CT is a system of public append-only logs that store TLS certificates issued
by trusted CAs [21, 22]. If web browsers add the criterion that a certificate
must be logged before accepting it as valid, certificate issuance practices by CAs
effectively become transparent so that mistakes and malfeasance can be detected
by anyone that observes the logs. These observers are called monitors because
they download every certificate from all logs. One can self-host a monitor,
or use a third-party service like crt.sh, or follow other models based on
subscriptions [9, 23]. To avoid introducing more parties that are trusted
blindly as in the CA ecosystem, CT stands on a cryptographic foundation that
permits efficient verification of inclusion (a certificate is in the log) and the
append-only property (no certificate has been removed or modified) [13]. A
party engaging in verification of these (logarithmic) proofs is called an auditor.

In practice, CT has been rolled-out gradually to not break the web [43].
One facilitating factor has been the introduction of Signed Certificate Times-
tamps (SCTs). An SCT is a log’s promise to include a certificate within a certain
amount of time; typically 24 hours. This guarantees low-latency certificate
issuance so that CAs can embed SCTs in certificates to keep web servers oblivi-
ous to CT. Google Chrome and Apple’s Safari require SCTs before accepting a
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certificate as valid, and steps towards further SCT verification have been taken
recently [42]. Tor Browser does not require CT yet [11].

3 Sauté Onions Until Discovery is Transparent
and Confection is Firm

3.1 System Goals
Let an onion association be unidirectional from a traditional domain name to
an onion address. Three main system goals are as follows:

Privacy-Preserving Onion Associations Users should discover the same onion
associations, and otherwise the possibility of an inconsistency must be-
come public knowledge.

Forward Censorship Resistance Unavailability of a TLS site must not im-
pede discovery of past onion associations.

Automated Verifiable Discovery Onion association search should be possi-
ble without requiring blind trust in third-parties. It must be hard to
fabricate non-empty answers, and easy to automate the setup for scala-
bility and robustness.

For comparison, today’s onion location [33] does not assure a user that the
same HTTP header is set for them as for everyone else. Classes of users that
connect to a domain at different times or via different links can be given targeted
redirects to distinct onion addresses without detection [45]. Onion location
also does not work if a regular site becomes unavailable due to censorship.
The search engine approach is further a frequent ask by Tor users [49]. The
solutions that exist in practice rely on manually curated lists [27, 34, 41],
notably with little or no retroactive accountability. As specified above, we
aim for a similar utility but with a setup that can be automated for all onion
associations and without the ability to easily fabricate non-empty answers
without trivial detection. We sketch out how these security properties are
achieved in Section 3.3.4.

3.2 Threat Model and Scope
We consider an attacker that wants to trick a user into visiting a targeted
onionsite without anyone noticing the possibility of such behavior. Users are
assumed to know the right traditional domain name that is easy to remember
(such as torproject.org), but not its corresponding onion address. We
further assume that the attacker either controls a trusted CA sufficiently to
issue certificates or is able to deceive them sufficiently during certificate issuance
to obtain a valid certificate from that CA. Anymisbehavior is however assumed
to be detectable in CT. So, the certificate ecosystem is treated as a building
block that we make no attempt to improve.
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We permit the attacker to make TLS sites unavailable after setup, but
we assume it is difficult to censor the CT log ecosystem because it can be
mirrored by anyone. Also, as part of the Internet authentication infrastructure,
adversaries may have equities conflicts in blocking CT logs, and if concerned
at all about appearance would have a harder time justifying such a block
versus, e.g., a political, journalism, or social media site. Similar to CT, we
do not attempt to solve certificate revocation and especially not in relation
to certificates that are connected to discovery of onion associations. This
is consistent with Tor Browser’s existing model for revocation with onion
location, which similarly depends on the certificate for the redirecting domain.
There is no formal counterpart to revoke a result in a search engine, but we
outline future work related to this.

Our threat model includes countries that block direct access to HTTPS
sites [25]. This is arguably a capable attacker, as no country is currently known
to completely block indirect access via the Tor network (though in some places
Tor bridges and/or obfuscated transport is needed). Our threat model also
considers the plethora of blindly trusted parties that help users discover onion
addresses with little or no retroactive accountability [6, 27, 34, 41]. In other
words, it is in-scope to pave the path towards more accountability.

3.3 Description of Sauteed Onions
An observation that inspired work on sauteed onions is that onion location
requires HTTPS [33]. This means that discovery of onion associations already
relies on the CA ecosystem. By incorporating the use of CT, it is possible
to add accountability to CAs and other parties that help with onion address
discovery while also raising the bar for censoring sites and reducing anonymity.
The name sauteed onions is a cooking pun; the association of an onion address
with a domain name becomes transparent for everyone to see in CT logs.

For background, a CA-issued certificate can contain both a traditional
domain name and a .onion address [35, 36]. This can be viewed as a mutual
association because the issuing CA must verify the traditional domain name
and the specified onion address. An immediate problem is that this would be
ambiguous if there are multiple domain names; which one (if any) should be
associated with an onion address with such certificate coalescence? A more
appropriate path forward would therefore be to define an X.509v3 extension
for sauteed onions which clearly declares that a domain-validated name wants
to be associated with an onion address.

We describe two uses of sauteed onions that achieve our goals; first assuming
it is easy to get CA-issued certificates that contain associated onion addresses
for domain-validated names, and then a short-term roll-out approach that
could make it a reality now. A sauteed onion is simply a CT-logged certificate
that claims example.com wants to be associated with <addr>.onion but not
necessarily the other way around, i.e., a unidirectional association.
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Figure 1: Onion location based on a CT-logged certificate.

3.3.1 Onion Location

Figure 1 illustrates onion location that uses certificates. A user establishes
a TLS connection to a site as usual. Upon encountering a certificate that is
CT-logged with an associated onion address for the visited site example.com,
an onion-location prompt becomes available in Tor Browser or the onion site
is visited automatically. This is the same type of redirect behavior as today’s
onion location [33], except that the possibility of such a redirect is disclosed
in public CT logs. Attempts at targeted redirects would thus be visible to
site owners and independent third-parties. A redirect to someone else’s onion
address would also be visible to the respective site owners. Notably the ability
to detect inappropriate redirects acts as a deterrence while also being the first
step towards remediation, e.g., if users bookmarked onion addresses [49] to
achieve trust on first use or to avoid visiting a regular site and an onionsite in
a way that might reduce a user’s anonymity set.

A key observation is that onion location has always been a feature facilitated
by TLS. By implementing it in certificates rather than HTTP headers that are
delivered via HTTPS connections, TLS applications that are “not web” can
use it too without rolling their own mechanisms. The addition of requiring
CT to follow onion-location redirects is also an improvement compared to
today, although one that could be achieved with an HTTP-based approach as
well (or more ambitiously, for all Tor Browser certificate validations [11]).

We prototyped the above in a web extension that is free and open source [4].
The criterion for CT logging is at least one embedded SCT from a log in the
policy used by Google Chrome [19]. If an onion-location redirect is followed,
the path of the current webpage is preserved, similar to a typical configuration
of today’s HTTP-based onion location header that instead lists a complete
URL [33].

3.3.2 Search Engine

A significant challenge for third-parties that help users discover TLS sites that
are available as onion services is to gain confidence in the underlying dataset
at scale. For example, SecureDrop onion names are scoped to news sites [41];
the list by Muffett is scoped as “no sites for tech with less than (arbitrary)
10,000 users” [27]; and ahmia.fi does not even attempt to give onion addresses
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Figure 2: Verifiable domain name to onion address search.

human-meaningful names [31]. To make matters worse, solutions based on
manually curated lists and third-party search are currently implemented with
little or no accountability.

Figure 2 shows what our approach brings to the table. All CT logs can
be monitored by a third-party to discover sauteed onions. A search API
can then be presented to users for the resulting dataset, similar to existing
monitoring services but scoped specifically for discovery of onion associations.
The utility of such a search API is: “what onion addresses are available for
www.example.com ”.

The expected behavior of the search API is that an answer can not be
fabricated without controlling a CA or hijacking certificate issuance, and
any CA malfeasance should further be caught by CT. This means that no
party can fabricate inappropriate answers without detection. This is a major
improvement compared to the alternative of no verifiability at all, although one
that in and of itself does not prevent false negatives. In other words, available
answers could trivially be omitted. This is a limitation with the authenticated
data structure in CT that can be fixed; see security sketch in Section 3.3.4 for
an intuition of how to work around it.

We specified an HTTP REST API that facilitates search using a domain
name; the API also makes available additional information like the actual
certificate and its exact index in a CT log. In total there are two endpoints:
search (list of matches with identifiers to more info) and get (more info).
The complete API specification is available online together with our implemen-
tation, which is free and open source [4]. An independent implementation
from Tor’s hack week is also available by Rhatto [39]. Our prototype runs
against all CT logs in Google Chrome for certificates logged after July 16, 2022.
A few query examples are available in Appendix A.

3.3.3 Certificate Format

Until now we assumed that a sauteed onion is easily set up, e.g., using an
X.509v3 extension. The bad news is that such an extension does not exist, and
it would likely be a long journey to standardize and see deployment by CAs.
Therefore, our prototypes rely on a backwards-compatible approach that en-
codes onion addresses as subdomains [44]. To declare that example.comwants
to be associated with <addr>.onion, one can request a domain-validated certifi-
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cate that contains both example.com and <addr>onion.example.com [46].
The inclusion of example.com ensures that such a setup does not result in a
dangerous label [17]. The hack to encode an onion address as a subdomainmakes
it part of the certificate without requiring changes to CAs. Appendix B details
the necessary setup-steps further. The gist is the addition of a subdomain DNS
record and using the -d option in certbot [14].

Although the subdomain approach is easy to deploy right now, it is by
no means a perfect solution. An X.509v3 extension would not require the
configuration of an additional DNS record. In other words, the unidirectional
sauteed onions property works just as well if the subdomain is not domain-
validated. The important part is that the CA validates example.com, and that
the associated onion address can be declared somewhere in the issued certificate
without an ambiguous intent. Another imperfection that goes hand-in-hand
with backwards-compatibility is that CAs would have to opt-out from sauteed
onions, unlike site owners that instead have to opt-in.

To avoid recommending a pattern that is discouraged by CAs, the Tor
Project should at least have a dialog with Let’s Encrypt which issues the most
certificates [5]. Somewhat similar subdomain hacks related to CAs exist, but
then with explicit negotiations [47]. Subdomain hacks without a relation to
CAs and TLS were discouraged in the past [20]. We argue that sauteed onions
is related because CA-validated names are at the heart of our approach. For
example, this is unlike Mozilla’s binary transparency idea that just wanted
to reuse a public log [26]. Sauteed onions also do not result in more issued
certificates; it is just the number of domain-validated names that increase by
one for TLS sites that do the setup.

3.3.4 Security Sketch

Our threat model disallows the attacker to tamper with CT and to make
the log ecosystem unavailable. Onion location as described in Section 3.3.1
therefore ensures that a redirect becomes public, achieving detectability as
defined in our privacy-preserving onion association goal. The search engine in
Section 3.3.2 trivially achieves the same goal because onion associations are
found via CT. Blocking a TLS site is additionally too late if an association is
already in a CT log, thus achieving forward censorship resistance. Our search
engine approach further makes it hard to forge non-answers without detection
because it requires control of a CA and defeating the tamper-evidence of CT logs.
While it is possible to omit available answers, this can be mitigated by having
multiple search APIs, domains that check the integrity of their own onion
associations similar to the proposed verification pattern in CONIKS [24], or
to represent the sauteed onion dataset as a sparse Merkle tree to get a verifiable
log-backed map that additionally supports efficient non-membership proofs
that CT lacks [10, 15].
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3.4 Future Work
It would be valuable to implement proofs of no omissions as well as native
lookups in a web extension or Tor Browser to verify everything before showing
the user a result (certificates, proofs of logging, etc). The entire or selected
parts of the sauteed onion dataset may further be delivered to Tor Browser
similar to SecureDrop onion names [41]. The difference would be that the
list is automated using a selection criteria from CT logs rather than doing it
manually on a case-by-case basis. A major benefit is that the sauteed onion
dataset can then be queried locally, completely avoiding third-party queries and
visits to the regular site. Another approach to explore is potential integration
of the sauteed onion dataset into Tor’s DHT: a cryptographic source of truth
for available onion associations is likely a helpful starting point so that there is
something to distribute. It would also be interesting to consider other search-
engine policies than show everything as in our work, e.g., only first association
or last association. (These policies can be verified with full audits [15].)

4 Related Work
The CA/B forum accepts certificates with .onion addresses [35, 36]. DigiCert
supports extended validation of .onion addresses [37], and HARICA domain
validation [38]. Muffett proposed same-origin onion certificates that permit
clients to omit verification of the CA trust chain for onionsites [28]. Sauteed
onions help Tor users discover domain names with associated onion addresses.
Therefore, it is a complement to approaches that bring HTTPS to onionsites.

Syverson suggested that traditional domain names and .onion addresses
can be glued into a single registered domain [44]. Nusenu proposed long-term
Tor relay identifiers based on domain names to retrieve lists of relevant public
keys via HTTPS [32]. Sauteed onions may be used for such associations with
the benefit of transparency, and it is further a lighter version of Syverson and
Traudt’s self-authenticated traditional addresses which favors early deployment
over properties like bidirectional onion associations, guaranteed timeliness of
revocation, and addressing all known threats [45, 46].

Winter et al. studied how users engage with onion services [49]. A gist
is that Tor users have a hard time discovering onion addresses and verify-
ing them as authentic. Common discovery mechanisms that are associated
with human-meaningful identifiers include personal communication, webpage
links, onion-location redirects [33], third-party lists [34], and search engines
like DuckDuckGo. Prior work has also focused on enumerating onion ad-
dresses without any associated identity, e.g., through CT-logged certificates
with .onion addresses [27] and crawling [6, 31]. Sauteed onions enhance
onion location by making the claimed associations transparent in CT, and
facilitate third-party solutions with less blind trust and without assumptions
about TLS sites not becoming blocked in the future.

Several ideas were proposed that mitigate or bypass the problem of random-
looking onion addresses. Some sites generate vanity addresses that, e.g., start
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with a prefix and have other memorable traits [1]. Fink sketched out how to
map onion addresses to a set of words [16]. Kadianakis et al. defined a common
API to hook into alternative naming systems that give onion addresses pet
names [18]. SecureDrop Onion Names is one such example that is, however,
implemented directly in Tor Browser as an HTTPS Everywhere ruleset for
selected news sites. Other alternative naming systems include Namecoin [2]
and OnioNS [48]. Sauteed onions is also an alternative naming system, but one
that relies on CAs and CT logs. It may be possible to construct sauteed onions
via DNSSEC, but then relying on the DNS hierarchy without transparency
logging. Scaife et al. [40] proposed the .o TLD as an onionsite with DNSSEC.

Nordberg connected transparency logs and the consensus mechanism that
Tor uses [29]. Dahlberg et al. proposed CT in Tor for all certificate valida-
tions [11]. We only check signatures of embedded SCTs in relation to onion
location, and our search engine is a simple application of CTmonitoring. There
is a large body of orthogonal work that improve CAs and CT. For example,
multi-path domain-validation makes it harder to hijack onion associations [7],
and deployment of gossip would harden our CT log assumptions [8, 30].

5 Conclusion
Sauteed onions declare unidirectional associations from domain names to
onion addresses. These onion associations are established in CA-issued and
CT-logged TLS certificates, thereby making them public for everyone to see.
We propose two immediate applications: certificate-based onion location and
more automated verifiable search. Both applications are opt-in for domain
owners, and rely on similar assumptions as today’s onion location. The added
benefit is more transparency, which facilitates a higher degree of consistency
between found onion associations as well as more censorship-resistance for
TLS sites after setup. Configuration of sauteed onions requires one more DNS
record and a domain-validated certificate from any CA (such as Let’s Encrypt).
In the future, the additional DNS record may be replaced by an X.509v3
extension. We leave it as a fun exercise to find the onion address of a TLS site
that is intentionally being censored by us: blocked.sauteed-onions.org.
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A Onion Association Search Examples
We host the search engine described in Section 3.3.2 on a Debian VMwith 1GB
RAM, 20GB SSD, and a single vCPU. It is available at api.sauteed-onions.o
rg as well as zpadxxmoi42k45iifrzuktwqktihf5didbaec3xo4dhvlw2hj54
doiqd.onion. Please note that we operate this prototype on a best-effort level
until December, 2022.

An example for the search endpoint is provided in Figure 3, followed by
extracting additional certificate information using the get endpoint in Figure 4.
There are many CT-logged certificates for the same onion association because
certificates are renewed periodically and typically submitted to multiple CT
logs.

B Configuration Example
We used certbot to set up sauteed onions using Let’s Encrypt and apache on
a Debian system. The difference when compared to the usual certbot instruc-
tions is that the -d flag must be specified to enumerate all SANs as a comma-
separated list [14]. The domain name with an associated onion address as a sub-
domain also needs to be reachable viaDNS for Let’s Encrypt to perform domain
validation. Therefore, an appropriate A/AAAA or CNAME record is required.

https://words.filippo.io/how-plex-is-doing-https-for-all-its-users/
https://words.filippo.io/how-plex-is-doing-https-for-all-its-users/
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A sanity-check for www.sauteed-onions.org would be to verify that dig
qvrbktnwsztjnbga6yyjbwzsdjw7u5a6vsyzv6hkj75clog4pdvy4cydonion
.www.sauteed-onions.org returns the same IP address as dig www.sauteed
-onions.org before running certbot –apache -d www.sauteed-onions.
org,qvrbktnwsztjnbga6yyjbwzsdjw7u5a6vsyzv6hkj75clog4pdvy4cydo
nion.www.sauteed-onions.org. See crt.sh for an example certificate [3].
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Website Fingerprinting with Website Oracles

Tobias Pulls and Rasmus Dahlberg

Abstract
Website Fingerprinting (WF) attacks are a subset of traffic analysis attacks
where a local passive attacker attempts to infer which websites a target
victim is visiting over an encrypted tunnel, such as the anonymity network
Tor. We introduce the security notion of aWebsite Oracle (WO) that gives
a WF attacker the capability to determine whether a particular monitored
website was among the websites visited by Tor clients at the time of a
victim’s trace. Our simulations show that combining a WO with a WF
attack—which we refer to as a WF+WO attack—significantly reduces
false positives for about half of all website visits and for the vast majority
of websites visited over Tor. The measured false positive rate is on the
order one false positive per million classified website trace for websites
around Alexa rank 10,000. Less popular monitored websites show orders
of magnitude lower false positive rates.

We argue thatWOs are inherent to the setting of anonymity networks
and should be an assumed capability of attackers when assessing WF
attacks and defenses. Sources of WOs are abundant and available to a
wide range of realistic attackers, e.g., due to the use of DNS, OCSP, and
real-time bidding for online advertisement on the Internet, as well as the
abundance of middleboxes and access logs. Access to a WO indicates that
the evaluation of WF defenses in the open world should focus on the
highest possible recall an attacker can achieve. Our simulations show that
augmenting the Deep Fingerprinting WF attack by Sirinam et al. [75]
with access to a WO significantly improves the attack against five state-of-
the-art WF defenses, rendering some of them largely ineffective in this
new WF+WO setting.

1 Introduction
A Website Fingerprinting (WF) attack is a type of traffic analysis attack where
an attacker attempts to learn which websites are visited through encrypted
network tunnels—such as the low-latency anonymity network Tor [22] or
Virtual Private Networks (VPNs)—by analysing the encrypted network traf-
fic [12, 29, 30, 41, 61, 77]. The analysis considers only the size and timing
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of encrypted packets sent over the network to and from a target client. This
makes it possible for attackers that only have the limited capability of observing
the encrypted network traffic (sometimes referred to as a local eavesdropper) to
performWF attacks. Sources of such capabilities include ISPs, routers, network
interface cards, WiFi hotspots, and guard relays in the Tor network, among
others. Access to encrypted network traffic is typically not well-protected over
the Internet because it is already in a form that is considered safe to expose to
attackers due to the use of encryption.

The last decade has seen significant work on improved WF attacks (e.g.,
[9, 28, 75, 85]) and defenses (e.g, [7, 8, 37, 47]) accompanied by an ongoing
debate on the real-world impact of these attacks justifying the deployment
of defenses or not, in particular surrounding Tor (e.g., [36, 62, 86]). There
are significant real-world challenges for an attacker to successfully perform
WF attacks, such as the sheer size of the web (about 200 million active web-
sites [57]), detecting the beginning of website loads in encrypted network
traces, background traffic, maintaining a realistic and fresh training data set,
and dealing with false positives.

Compared to most VPN implementations, Tor has some basic but rather
ineffective defenses in place against WF attacks, such as padding packets to
a constant size and randomized HTTP request pipelining [9, 22, 85]. Fur-
thermore, Tor recently started implementing a framework for circuit padding
machines to make it easier to implement traffic analysis defenses [51] based
on adaptive padding [37, 74]. However, the unclear real-world impact of WF
attacks makes deployment of proposed effective (and often prohibitively costly
in terms of bandwidth and/or latency overheads) WF defenses a complicated
topic for researchers to reach consensus on and the Tor Project to decide upon.

1.1 Introducing Website Oracles
In this paper, we introduce the security notion of a Website Oracle (WO)
that can be used by attackers to augment any WF attack. A WO answers
“yes” or “no” to the question “was a particular website visited over Tor at this
point in time?”. We show through simulation that such a capability—access
to a WO—greatly reduces the false positive rate for an attacker attempting to
fingerprint the majority of websites and website visits through the Tor network.
The reduction is to such a great extent that our simulations suggest that false
positives are no longer a significant reason for why WF attacks lack real-world
impact. This is in particular the case for onion services where the estimated
number of websites is a fraction compared to the “regular” web [34].

Our simulations are based on the privacy-preserving network measurement
results of the live Tor network in early 2018 by Mani et al. [49]. Besides
simulating WOs we also identify a significant number of potential sources
of WOs that are available to a wide range of attackers, such as nation state
actors, advertisement networks (including their customers), and operators of
Tor relays. Some particularly practical sources—due to DNS and how onion
services are accessed—can be used by anyone with modest computing resources.
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We argue that sources of WOs are inherent in Tor due to its design goal
of providing anonymous and not unobservable communication: observable
anonymity sets are inherent for anonymity [38, 63, 68], and a WO can be
viewed as simply being able to query for membership in the destination/recipi-
ent anonymity set (the potential websites visited by a Tor client). The solution
to the effectiveness ofWF+WOattacks is therefore not to eliminate all sources—
that would be impossible without unobservable communication [38, 63, 68]—
but to assume that an attacker has WO access when evaluating the effectiveness
of WF attacks and defenses, even for weak attackers like local (passive) eaves-
droppers.

The introduction of a WO in the setting of WF attacks is similar to how
encryption schemes are constructed to be secure in the presence of an attacker
with access to encryption and decryption oracles (chosen plaintext and cipher-
text attacks, respectively) [25, 55, 67]. This is motivated by the real-world
prevalence of such oracles, and the high impact on security when paired with
other weaknesses of the encryption schemes: e.g., Bleichenbacher [5] padding
oracle attacks remain an issue in modern cryptosystems today despite being
discovered about twenty years ago [52, 71].

1.2 Contributions and Structure
Further background on anonymity, Tor, and WF are presented in Section 2.
Section 3 defines a WO and describes two generic constructions for combining
a WO with any WF attack. Our generic constructions are a type of Classify-
Verify method by Stolerman et al. [76], first used in the context of WF attacks
by Juarez et al. [36] and later by Greschbach et al. [26]. Section 4 presents a
number of sources of WOs that can be used by a wide range of attackers. We
focus on practical sources based on DNS and onion service directories in Tor,
offering probabilistic WOs that anyone can use with modest resources. We
describe how we simulate access to a WO throughout the rest of the paper in
Section 5, based on Tor network measurement data from Mani et al. [49].

Section 6 experimentally evaluates the performance of augmenting the
state-of-the-art WF attack Deep Fingerprinting (DF) by Sirinam et al. [75]
with WO access using one of our generic constructions. We show significantly
improved classification performance against unprotected Tor as well as against
traces defended with the WF defenses WTF-PAD by Juarez et al. [37] and
Walkie-Talkie by Wang and Goldberg [87], concluding that the defenses are
ineffective in this new setting where an attacker has access to a WO. Further,
we also evaluate DF with WO access against Wang et al.’s dataset [85] with
simulated traces for the constant-rate WF defenses CS-BuFLO and Tamaraw
by Cai et al. [7, 8]. Our results show that constant-rate defenses are overall
effective defenses but not efficient due to the significant induced overheads.
We then evaluate two configurations of the WF defense DynaFlow by Lu
et al. [47], observing similar effectiveness as CS-BuFLO but at lower overheads
approaching that of WTF-PAD and Walkie-Talkie.

In Section 7 we discuss our results, focusing on the impact on false positives
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with WO access, how imperfect sources for WOs impact WF+WO attacks,
limitations of our work, and possible mitigations. Our simulations indicate
that WF defenses should be evaluated against WF attacks based on how they
minimise recall. We present related work in Section 8, including howWF+WO
attacks relate to traffic correlation and confirmation attacks. Section 9 briefly
concludes this paper.

2 Background
Here we present background on terminology, the anonymity network Tor,
and WF attacks and defenses.

2.1 Anonymity and Unobservability
Anonymity is the state of a subject not being identifiable from an attackers
perspective within the anonymity set of possible subjects that performed an
action such as sending or receiving a message [63]. For an anonymity network,
an attacker may not be able to determine who sent a message into the network—
providing a sender anonymity set of all possible senders—and conversely, not
be able to determine the recipient of a message from the network out of all
possible recipients in the recipient anonymity set. Inherent for anonymity
is that the subjects in an anonymity set change based on what the attacker
observes, e.g., when some subjects send or receive messages [38, 68]. In gist,
anonymity is concerned with hiding the relationship between a sender and
recipient, not its existence.

Unobservability is a strictly stronger notion than anonymity [38, 63, 68].
In addition to anonymity of the relationship between a sender and recipient,
unobservability also requires that an attacker (not acting as either the sender
or recipient) cannot sufficiently distinguish if there is a sender or recipient or
not [63]. Perfect unobservability is therefore the state of an attacker being
unable to determine if a sender/recipient should be part of the anonymity set
or not.

2.2 Tor
Tor is a low-latency anonymity network for anonymising TCP streams with
about eight million daily users, primarily used for anonymous browsing, cen-
sorship circumvention, and providing anonymous (onion) services [22, 49].
Because Tor is designed to be usable for low-latency tasks such as web browsing,
its threat model and design does not consider powerful attackers, e.g., global
passive adversaries that can observe all network traffic on the Internet [20, 22].
However, less powerful attackers such as ISPs and ASes that observe a fraction
of network traffic on the Internet are in scope.

Users typically use Tor Browser—a customised version of Mozilla Firefox
(bundled with a local relay)—as a client that sends traffic through three relays
when browsing a website on the regular Internet: a guard, middle, and exit
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Figure 1: Using Tor to browse to a website, where an attacker observes the
encrypted traffic into the Tor network for a target user, attempting to determine
the website the user is visiting.

relay. Traffic from the client to the exit is encrypted in multiple layers as part
of fixed-size cells such that only the guard relay knows the IP-address of the
client and only the exit relay knows the destination website. There are about
7000 public relays at the time of writing, all available in the consensus generated
periodically by the network. The consensus is public and therefore anyone can
trivially determine if traffic is coming from the Tor network by checking if the
IP-address is in the consensus. Note that the encrypted network traffic in Tor
is exposed to network adversaries as well as relays as it traverses the Internet.
Figure 1 depicts the setting just described, highlighting the anonymity sets of
users of Tor Browser and the possible destination websites.

2.3 Website Fingerprinting
As mentioned in the introduction, attacks that analyse the encrypted network
traffic (a trace) between a Tor client and a guard relay with the goal to detect
the website a client is visiting are referred to as website fingerprinting (WF)
attacks. Figure 1 shows the typical location of the attacker, who can also
be the guard itself. WF attacks are evaluated in either the closed or the open
world. In the closed world, an attacker monitors a number of websites and it
is the goal of the attacker to determine which website out of all the possible
monitored websites a target is visiting. The open world is like the closed
world with one significant change: the target user may also visit unmonitored
websites. This means that in the open world the attacker may also classify a
trace as unmonitored in addition to monitored, posing a significantly greater
challenge for the attacker in a more realistic setting than the closed world.
The ratio between monitored and unmonitored traces in a dataset is further a
significant challenge for WF attacks when assessing their real-world significance
for Tor [36]. Typically, WF attacks are evaluated on the frontpages of websites:
webpage fingerprinting is presumably much more challenging due to the orders
of magnitude of more webpages than websites. Unless otherwise stated, we
only consider the frontpages of websites in this paper.
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2.3.1 Website Fingerprinting Attacks

Prior to WF attacks being considered for use on Tor, they were used against
HTTPS [12], web proxies [30, 77], SSH tunnels [41], and VPNs [29]. For Tor,
WF attacks are typically based on machine learning and can be categorized
based on if they use deep learning or not.

Traditional WF attacks in the literature use manually engineered features
extracted from both the size and timing of packets (and/or cells) sent by Tor.
State of the art attacks with manually engineered features are Wang-kNN [85],
CUMUL [59], and k-FP [28]. For reference, Wang-kNN has 1225 features,
CUMUL 104 features, and k-FP 125 features. In terms of accuracy, k-FP
appears to have a slight edge over the other two, but all three report over
90% accuracy against significantly sized datasets. As traditional WF attacks
progressed, the features more than the type of machine learning method have
shown to be vital for the success of attacks, with an emerging consensus on
what are important features (e.g., coarse features like number of incoming and
outgoing packets) [13, 28, 59].

Deep learning was first used for WF attacks by Abe and Goto in 2016 [2].
Relatively quickly, Rimmer et al. reached parity with traditional WF attacks,
lending credence to the emerging consensus that the research community had
found the most important features for WF [70]. However, recently Sirinam
et al. [75] with Deep Fingerprinting (DF) significantly improved on other
WF attacks, also on the WTF-PAD and Walkie-Talkie defenses, and is at the
time of writing considered state-of-the-art. DF is based on a Convolutional
Neural Network (CNN) with a customized architecture for WF. Each packet
trace as input to DF is simply a constant size (5000) list of cells (or packets)
and their direction (positive for outgoing, negative for incoming), ignoring
size and timings. Based on the input, the CNN learns features on its own: we
do not know what they are, other than preliminary work indicating that the
CNN gives more weight to input early in the trace [50].

The last layer of the CNN-based architecture of DF is a softmax function:
it assigns (relative) probabilities to each class as the output of classification.
These probabilities allow a threshold to be defined for the final classification in
the open world, requiring that the probability of the most likely class is above
the threshold to classify as a monitored website.

2.3.2 Website Fingerprinting Defenses

WFdefenses for Tormodify the timing and number of (fixed-size) cells sent over
Tor when a website is visited. The modifications are done by injecting dummy
traffic and introducing artificial delays. Defenses can typically be classified as
either based on constant-rate traffic or not, where constant rate defenses force
all traffic to fit a pre-determined structure, forming collision sets for websites
where their traffic traces appear identical to an attacker. Non-constant rate
defenses simply more-or-less randomly inject dummy traffic and/or artificial
delays with the hope of obfuscating the resulting network traces. WF defenses
are typically compared in terms of their induced bandwidth (BOH) and time
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(TOH) overheads compared to no defense. Further, different WF defenses
make more or less realistic and/or practical assumptions, making comparing
overheads necessary but not nearly sufficient for reaching conclusions.

We briefly describe WF defenses that we later use to evaluate the impact of
attackers performing enhanced WF attacks with access to WOs:

Walkie-Talkie by Wang and Goldberg [87] puts Tor Browser into half duplex
mode and pads traffic such that different websites result in the same cell
sequences. This creates a collision set between a visited website and a
target decoy website which results in the same cell sequence with the
defense. Their evaluation shows 31% BOH and 34% TOH. Collision
sets grow beyond size two at the cost of BOH.

WTF-PAD by Juarez et al. [37] is based on the idea of adaptive padding [74]
where fake padding is injected only when there is no real traffic to send.
The defense is simulated on collected packet traces and its design is the
foundation of the circuit padding framework recently implemented in
Tor. The simulations report 50-60% BOH and 0% TOH.

CS-BuFLO by Cai et al. [7] is a constant rate defense where traffic is always
sent at a constant rate between a sender and receiver, improving on prior
work by Dyer et al. [23]. Their evaluation shows 220-270% BOH and
270-340% TOH.

Tamaraw by Cai et al. [8] is another constant rate defense that further im-
proves on CS-BuFLO. In the evaluation by Wang and Goldberg, they
report 103% BOH and 140% TOH for Tamaraw [87].

DynaFlow by Lu et al. [47] is a dynamic constant-rate defense that allows for
the defense to adjust its parameters (notably the “inter-packet interval”)
based on configuration and on the observed traffic. The evaluation shows
an overall improvement over Tamaraw when configured to use similar
overheads.

The primary downside of defenses like Walkie-Talkie that depend on creating
collision sets for websites is that they require up-to-date knowledge of the target
website(s) to create collisions with (to know how to morph the traffic traces):
this is a significant practical issue for deployment [58, 85, 87]. Constant rate
defenses like CS-BuFLO and Tamaraw are easier to deploy but suffer from
significant overheads [7, 8]. WTF-PAD is hard to implement both efficiently
and effectively in practice due to only being simulated on packet traces as-is
and also being vulnerable to attacks like Deep Fingerprinting [37, 75]. While
DynaFlow shows great promise, but requires changes at the client (Tor Browser,
local relay, or both) and at exit relays to combine packets with payloads smaller
than Tor’s cell size [47]. Without combined packets its advantage in terms of
overhead compared to Tamaraw likely shrinks.
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2.4 Challenges for WF Attacks in Practice
A number of practical challenges for an attacker performing WF attacks have
been highlighted over the years, notably comprehensively so by Mike Perry of
the Tor Project [62] and Juarez et al. [36]. Wang and Goldberg have showed
that several of the highlighted challenges—such as maintaining a fresh data set
and determining when websites are visited—are practical to overcome [86].
What remains are two notably significant challenges: distinguishing between
different goals of the attacker and addressing false positives.

For attacker goals when performing WF attacks, an attacker may want to
detect website visits with the goal of censoring access to it, to identify all users
that visit particular websites, or to identify every single website visited by a
target [62]. Clearly, these goals put different constraints on the attacker. For
censorship, classification must happen before content is actually allowed to be
completely transferred to the victim. For monitoring only a select number of
websites the attacker has the most freedom, while detecting all website visits
by a victim requires the attacker to have knowledge of all possible websites on
the web.

For addressing false positives there are a number of aspects to take into
account. First, the web has millions of websites that could be visited by a
victim (not the case for onion services [34]), and each website has a significant
number of webpages that are often dynamically generated and frequently
changed [36, 62]. Secondly, how often victims potentially visit websites that
are monitored by an attacker is unknown to the attacker, i.e., the base rate of
victims are unknown. The base rate leads to even a small false positive rate of
a WF attack overwhelming an attacker with orders of magnitude more false
positives than true positives, leaving WF attacks impractical for most attacker
goals in practice.

3 Website Oracles
We first define a WO and then present two generic constructions for use with
WF attacks based on the kind of output the WF attack supports.

3.1 Defining Website Oracles
Definition 1. A website oracle answers true or false to the question “was a
particular monitored website w visited over the Tor network at time t?”.

A WO considers only websites and not webpages for w , but note that even
for webpage fingerprinting being able to narrow down the possible websites
that webpages belong to through WO access is a significant advantage to an
attacker. The time t refers to a period of time or timeframe during which a
visit should have taken place. Notably, different sources of WOs may provide
different resolutions for time, forcing an attacker to consider a timeframe in
which a visit could have taken place. For example, timestamps in Apache
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or nginx access logs use regular Unix timestamps as default (i.e., seconds),
while CDNs like Cloudflare maintain logs with Unix nanosecond precision.
Further, there are inherent limitations in approximating t for the query when
the attacker in addition to WO access can only directly observe traffic from
the victim into Tor. We explore this later in Section 5.3.

One important limitation we place on the use of a WO with WF is that
the attacker can only query the WO for monitored websites. The open world
setting is intended to capture a more realistic setting for evaluating attacks,
and inherent in this is that the attacker cannot train (or even enumerate) all
possible websites on the web. Given the ability to enumerate and query all
possible websites gives the adversary a capability in line with a global passive
adversary performing correlation attacks, which is clearly outside of the threat
model of Tor [22]. We further relate correlation and confirmation attacks to
WF+WO attacks in Section 8.

Definition 1 defines the ideal WO: it never fails to observe a monitored
website visit, it has no false positives, and it can answer for an arbitrary t . This
is similar to how encryption and decryption oracles always encrypt and de-
crypt when modelling security for encryption schemes [25, 55, 67]. In practice,
sources of all of these oracles may be more or less ideal and challenging for
an attacker to use. Nevertheless, the prevalence of sources of these imperfect
oracles motivate the assumption of an attacker with access to an ideal oracle.
Similarly, for WOs, we motivate this assumption in Sections 4 and 5, in particu-
lar wrt. a timeframe on the order of (milli)seconds. Section 7 further considers
non-ideal sources of WOs and the effect on WF+WO attacks, both when the
WO can produce false positives and when the source only observes a fraction
of visits to monitored websites.

3.2 Generic Website Fingerprinting Attacks with Website
Oracles

As mentioned in Section 2.3, a WF attack is a classifier that is given as input a
packet trace and provides as output a classification. The classification is either
a monitored site or a class representing unmonitored (in the open world).
Figure 2 shows the setting where an attacker capable of performing WF attacks
also has access to a WO. We define a generic construction for WF+WO attacks
that works with any WF attack in the open world in Definition 2:

Definition 2 (Binary verifier). Given a website oracle o and WF classification
c of a trace collected at time t , if c is a monitored class, query the oracle o(c, t ).
Return c if the oracle returns true, otherwise return the unmonitored class.

Note that the WO is only queried when the WF classification is for a moni-
tored website and that Definition 2 is a generalisation of the “high precision”
DefecTor attack by Greschbach et al. [26]. In terms of precision and false pos-
itives, the above generic WF+WO construction is strictly superior to a WF
attack without a WO. Assume that the WF classification incorrectly classified
an unmonitored trace as monitored, then there is only a probability that a WO
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Figure 2: WF+WO attacks, where the WO infers membership of a particular
website w in the website anonymity set of all possible websites visited over
Tor during a particular timeframe t .

also returns true, depending on the probability that someone else visited the
website in the same timeframe over Tor. If it does not, then a false positive is
prevented. That is, a WF attack without WO access is identical to a WF attack
with access to a useless WO that always returns true; any improvements beyond
that will only help the attacker in ruling out false positives. We consider the
impact on recall later.

We can further refine the use of WOs for the subset of WF attacks that
support providing as output an ordered list of predictions in decreasing likeli-
hood, optionally with probabilities, as shown in Definition 3:

Definition 3 (List verifier). Given an ordered list of predictions in the open
world and a website oracle:

for top prediction p in list do
if p is unmonitored or oracle says p visited then

return list
move p to last in list and optionally update probabilities

First, we observe that if the WF attack thinks that it is most likely an
unmonitored website, then we accept that because a WO can only teach us
something new about monitored websites. Secondly, if the most likely predic-
tion has been visited according to theWO then we also accept that classification
result. Finally, all that is left to do is to consider this while repeatedly iterating
over the top predictions: if the top classification is a monitored website that
has not been visited according to the WO, then move it from the top of the list
and optionally update probabilities (if applicable, then also set p = 0.0 before
updating) and try again. Per definition, we will either hit the case of a moni-
tored website that has been visited according to the WO or an unmonitored
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prediction. As mentioned in Section 2.3, WF output that has some sort of
probability or threshold associated with classifications are useful for attackers
with different requirements wrt. false positives and negatives.

One could consider a third approach based on repeatedly querying a WO
to first determine if any monitored websites have been visited and then train
an optimised classifier (discarding monitored websites that we know have
not been visited). While this may give a minor improvement, our results
later in this paper as well as earlier work show that confusing monitored
websites is a minor issue compared to confusing an unmonitored website as
monitored [26, 36, 85].

4 Sources of Website Oracles
There are a wide range of potential sources of WOs. Table 1 summarizes a
selection of sources that are more thoroughly detailed in Appendix C. The
table shows the availability of the source, i.e., if the attacker needs to query
the source in near real-time as a website visit occurs or if it can be accessed
retroactively, e.g., through a legal request. We also estimate qualitatively the
false positive rate of the source, its coverage of websites it can monitor (or
fraction of Tor network traffic, depending on source), as well as the estimated
effort to access the source. Finally, the table gives an example of an actor with
access to the source.

Next we focus on a number of sources of WOs that we find particularly
relevant: several due to DNS in Section 4.1, the DHT of Tor onion directory
services in Section 4.2, and real-time bidding platforms in Section 4.3.

4.1 DNS
Before a website visit the corresponding domain name must be resolved to
an IP address. For a user that uses Tor browser, the exit relay of the current
circuit resolves the domain name. If the DNS record of the domain name is
already cached in the DNS cache of the exit relay, then the exit relay uses that
record. Otherwise the domain name is resolved and subsequently cached using
whichever DNS resolution mechanism that the exit relay has configured. Based
on this process we present three sources of WOs that work for unpopular
websites.

4.1.1 Shared Pending DNS Resolutions

If an exit relay is asked to resolve a domain name that is uncached it will create
a list of pending connections waiting for the domain resolution to finish. If
another connection asks that the same domain name be resolved, it is added
to the list of pending connections. When a result is available all pending
connections are informed. This is the basis of a WO: if a request to resolve
a domain name returns a record more quickly than previously measured by the
attacker for uncached entries, the entry was either pending resolution at the
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Figure 3: The two cases when deciding on a classifier’s threshold.

time of the request or already cached. Notably this works regardless of if exit
relays have DNS caches or not. However, the timing constraints of shared
pending connections are significant and thus a practical hurdle to overcome.

4.1.2 Tor’s DNS Cache at Exit Relays

If an unpopular website is visited by a user, the resolved domain namewill likely
be cached by a single relay. We performed 411 exitmap [88] measurements
between April 1–10 (2019), collecting on average 3544 (un)cached data points
for each exit using a domain under our control that is not used by anyone else.

Given a labelled data set of (un)cached times for each exit relay, we can
construct distinct per-relay classifiers that predict whether a measured time
corresponds to an (un)cached domain name. While there are many different
approaches that could be used to build such a classifier, we decided to use a
simple heuristic that should result in little or no false positives: output ‘cached’
iff no uncached query has ever been this fast before. Figure 3 shows the idea of
this classifier in greater detail, namely create a threshold that is the minimum
of the largest cached time and the smallest uncached time and then say cached
iff the measured time is smaller than the threshold. Regardless of how well
this heuristic performs (see below), it should be possible to construct other
classifiers that exploit the trend of smaller resolve times and less standard
deviation for cached queries (Figure 4). For example, 69.1% of all exit relays
take at least 50 ms more time to resolve an uncached domain on average.

To estimate an upper bound on how effective the composite classifier of all
per-relay classifiers could be without any false positives using our heuristic, we
applied ten-fold cross-validation to simply exclude every exit relay that had
false positives during any fold and then weighted the observed bandwidth for
the remaining classifiers by the individual true positive rates. This gives us an
estimate of how much bandwidth we could predict true positives for without
having any false positives. By comparing it to the total exit bandwidth of the
Tor network, we obtain an estimated upper bound true positive rate for the
composite classifier of 17.3%.
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Figure 4: The difference between (un)cached standard deviation andmean times
without any absolute values, i.e., a negative value implies that the uncached
time is smaller than the cached time.

When an attacker measures if a domain is cached or not the domain will,
after the measurement, be cached for up to an hour (current highest caching
duration in Tor, independent of TTL) at every exit. However, if a an attacker
can cause an exit to run low on memory, the entire DNS cache will be removed
(instead of only parts of it) due to a bug in the out-of-memory manager of Tor.
We have reported this to the Tor Project [65]. We further discuss in Section 7
how frequently an attacker on average can be expected to query a WO.

4.1.3 Caching at Recursive DNS Resolvers

For a website that is unpopular enough, there is a high chance that nobody on
the web visited the website within a given timeframe. This is the basis of our
next idea for a WO which is not mutually exclusive to the Tor network: wait a
couple of seconds after observing a connection, then probe all recursive DNS
resolvers of Tor exits that can be accessed to determine whether any monitored
website was cached approximately at the time of observing the connection by
inspecting TTLs.

In 2016 Greschbach et al. [26] showed that remote DNS resolvers like
Google’s 8.8.8.8 receive a large portion of all DNS traffic that exit relays
generate. To better understand how the DNS resolver landscape looks today,
we repeated their RIPE Atlas experiment setup for 35 hours in February 17–18
(2019), measuring every 30 minutes. Our results show that Google (16.8%) and
Cloudflare (7.4%) are both popular. Many exits use a same-AS resolver which
is presumably the ISP (42.3%), while other exits resolve themselves (15.2%) or
use a remote DNS resolver that we did not identify (18.2%). Further, we note
that there are at least one RIPE Atlas network measurement probe in the same
AS as 53.3% of all exits, providing access to many of the same DNS resolvers
as used by exits from a similar network vantage point.

Instead of using RIPE Atlas nodes we opted for a different approach which
is strictly worse: query Google’s and Cloudflare’s DNS resolvers from VMs in
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16 Amazon EC2 regions. With a simple experiment of first visiting a unique
domain (once again under our control and only used by us) using torify curl
and then querying the DNS resolvers from each Amazon VM to observe TTLs,
we got true positive rates of 2.9% and 0.9% for Google and Cloudflare with 1000
repetitions. While this may seem low, the cost for an attacker is at the time of
writing about 2 USD per day using on-demand pricing. Using an identical setup
we were also able to find a subset of monitored websites that yield alarmingly
high true positive rates: 61.4% (Google) and 8.0% (Cloudflare). Presumably
this was due to the cached entries being shared over a wider geographical area
for some reason (however, not globally). Regardless, coupled with the fact that
anyone can globally purge the DNS caches of Google [43] and Cloudflare [33]
for arbitrary domain names, this is a noteworthy WO source.

4.2 Onion Service Directories in Tor
To access an onion service a user first obtains the service’s descriptor from a
Distributed Hash Table (DHT) maintained by onion service directories. From
the descriptor the user learns of introduction points selected by the host of the
onion service in the Tor network that are used to establish a connection to
the onion service in a couple of more steps [79, 80] that are irrelevant here.
Observing a request for the descriptor of a monitored onion service is a source
for a WO. To observe visits for a target (known) onion service in the DHT, a
relay first has to be selected as one out of six or eight (depending on version)
relays to host the descriptor in the DHT, and then the victim has to select
that relay to retrieve the descriptor. For v2 of onion services, the location in
the DHT is deterministic [79] and an attacker can position its relays in such a
way to always be selected for hosting target descriptors. Version 3 of onion
services addresses this issue by randomising the process every 24 hours [80],
forcing an attacker to host a significant number of relays to get a WO for onion
services with high coverage. At the time of writing, there are about 3,500 relays
operating as onion service directories.

4.3 Real-Time Bidding
Real-Time Bidding (RTB) is an approach towards online advertisement that
allows a publisher to auction ad space to advertisers on a per-visit basis in
real time [83]. Google’s Display Network includes more than two million
websites that reach 90% of all Internet users [42], and an advertiser that uses
RTB must respond to submitted bid requests containing information such
as the three first network bytes of an IPv4 address, the second-level domain
name of the visited website, and the user agent string within ≈100 ms [45].
While the exact information available to the bidder depends on the ad platform
and the publisher’s advertisement settings, anonymous modes provide less
revenue [46]. Combined with many flavours of pre-targeting such as IP and
location filtering [82], it is likely that the bidder knows whether a user used
Tor while accessing a monitored website. Vines et al. [82] further note that
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“35% of the DSPs also allow arbitrary IP white-and blacklisting (Admedo,
AdWords, Bing, BluAgile, Criteo, Centro, Choozle, Go2Mobi, Simpli.fi)”.
Finally, observe that an attacker need not win a bid to use RTB as a WO.

5 Simulating Website Oracles
To be able to simulate access to a WO for arbitrary monitored websites we need
to simulate the entire website anonymity set of Tor, because the anonymity
set is what a WO queries for membership. We opt for simulation for ethical
reasons. The simulation has three key parts: how those visits are distributed,
the number of visits to websites over Tor, and the timeframe (resolution) of the
oracle source. Note that the first two parts are easy for an attacker to estimate by
simply observing traffic from live Tor exit relays, something we cannot trivially
do as researchers adhering to Tor’s research safety guidelines [64]. Another
option available to an attacker is to repeatedly query a WO to learn about the
popularity of its monitored websites and based on those figures infer the utility
of the WO. We opted to not perform such measurements ourselves, despite
access to several WOs, due to fears of inadvertently harming Tor users. Instead
we base our simulations on results from the privacy-preserving measurements
of the Tor network in early 2018 by Mani et al. [49].

5.1 How Website Visits are Distributed
Table 2 shows the average inferred website popularity from Mani et al. [49].
The average percentage does not add up to 100%, presumably due to the privacy-
preserving measurement technique or rounding errors. Their results show that
torproject.org is very popular (perhaps due to a bug in software using Tor),
and beyond that focus on Alexa’s [3] top one million most popular websites
as bins. The “other” category is for websites identified not part of Alexa’s top
one million websites ranking. For the rest of the analysis (not simulation)
in this paper we exclude torproject.org: for one, that Tor users visit that
website is unlikely to be an interesting fact for an attacker to monitor, and its
over-representation (perhaps due to a bug) will skew our analysis. Excluding
torproject.org, about one third of all website visits go to Alexa (0,1k], one
third to Alexa (1k,1m], and one third to other websites. The third column of
Table 2 contains adjusted average percentages.

In our simulations for website visits we treat the entries in column two of
Table 2 as bins of a histogram with the relative size indicated by the average
website popularity. After randomly selecting a bin (weighted by popularity),
in the case of an Alexa range we uniformly select a website within the range,
and for the other category we uniformly select from one million other websites.
This is a conservative choice given that there are hundreds of millions of active
websites on the Internet. Uniformly selecting within a bin will make the more
popular websites in the bin likely underrepresented while less popular websites
in the bin get overrepresented. However, we typically simulate an attacker that
monitors ≈100 websites and use the website popularity as the starting rank of
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Table 2: Inferred average website popularity for the entire Tor network early
2018, from Mani et al. [49, Figure 2].

Website Average Without
primary domain (%) torproject.org

torproject.org 40.1
Alexa (0,10] 8.4 13.9
Alexa (10,100] 5.1 8.4
Alexa (100,1k] 6.2 10.3
Alexa (1k,10k] 4.3 7.1
Alexa (10k,100k] 7.7 12.7
Alexa (100k,1m] 7.0 11.6
other 21.7 35.9

the first monitored website. For the most popular websites, monitoring 100
websites covers the entire or significant portions of the bins (Alexa ≤1k), and
for less popular websites (Alexa >1k), as our results later show, this does not
matter.

5.2 The Number of Website Visits
Mani et al. also inferred with a 95% confidence interval that (104 ± 36) ∗ 106
initial streams are created during a 24 hour period in the entire Tor network
[49]. Based on this, in our simulation we assume 140 million website visits per
day that are distributed as described above and occur uniformly throughout
the day. While assuming uniformity is naive, we selected the upper limit of
the confidence interval to somewhat negate any unreasonable advantage to the
attacker.

5.3 A Reasonable Timeframe
Wang and Goldberg show that it is realistic to assume that an attacker can
determine the start of a webpage load even in the presence of background noise
and multiple concurrent website visits [86]. An attacker can further determine
if a circuit is used for onion services or not [40, 60]. Now, consider an attacker
that observes traffic between a Tor client and its guard. The initial stream
contains the first HTTP GET request for a typical website visit. The request
will be the first outgoing packet as part of a website visit once a connection
has been established. When the request arrives at the destination is the point
in time when an oracle, e.g., instantiated by access logs would record this time
as the time of visit. Clearly, the exact time is between the request and the
response packets and the attacker observes the timing of those packets. So
what is a realistic timeframe for the attacker to use when it queries a WO?

Between January 22–30 (2019) we performed Round-Trip Time (RTT)
measurements using four Amazon EC2 instances that ran their own nginx
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Figure 5: Time differences between start, log, and stop events when visiting a
website over HTTP(S) using Tor.

HTTP(S) servers to visit themselves over Tor (with torify curl) using a fresh
circuit for each visit. This allowed us easy access to start and stop times for the
RTT measurement, as well as the time a request appeared in the nginx access
log (without any clock-drift). In total we collected 21,497 HTTP traces and
21,492 HTTPS traces, where each trace contains start, log, and stop timestamps.
Our results are shown in Figure 5. It is clear that that log-to-stop times are
independent of HTTP(S). More than half of all log-to-stop times (54.5%) are
within a 100 ms window (see 40–140 ms), and nearly all log-to-stop times are
less than 1000 ms.

Based on our experiment results we consider three timeframes relevant: 10
ms, 100 ms, and 1000 ms. First, 10 ms is relevant as close to optimal for any
attacker. On average, there are only 17 website visits during a 10 ms window
in the entire Tor network. 100 ms is our default for the WF experiments we
perform: we consider it realistic for many sources of WOs (e.g., Cloudflare
logs and real-time bidding). We also consider a 1000 ms timeframe relevant
due to the prevalence of sources of WOs with a resolution in seconds (e.g.,
due to Unix timestamps or TTLs for DNS). Based on our simulations and the
different timeframes, Appendix A contains an analysis of the utility of WOs
using Bayes’ law. Appendix B presents some key lessons from the simulation,
in particular that while the resolution and resulting timeframe is an important
metric in our simulation, it is minor in comparison to the overall website
popularity in Tor of the monitored websites.

6 Deep Fingerprinting with Website Oracles
We first describe how we augment the Deep Fingerprinting (DF) attack by
Sirinam et al. [75] with WO access. Next we evaluate the augmented classifier
on three different datasets with five different WF defenses. Source code and
datasets for simulating WF+WO attacks as well as steps to reproduce all of the
following results using DF are available at https://github.com/pylls/wfwo.

https://github.com/pylls/wfwo
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6.1 The Augmented Classifier
As covered in the background (Section 2.3), DF is a CNN where the last layer
is a softmax. The output is an array of probabilities for each possible class.
Compared to the implementation of DF used by Sirinam et al., we changed
DF to not first use binary classification in the open world to determine if it is
an unmonitored trace or not, but rather such that there is one class for each
monitored website and one for unmonitored. Conceptually, this slightly lowers
the performance of DF in our analysis, but our metrics show that mistaking
one monitored website for another is insignificant for the datasets used in the
analysis of this paper. The principal source of false positives is mistaking an
unmonitored website for a monitored.

Given the probability of each possible class as output of DF, we used the
second generic construction (Definition 3) from Section 3.2 to combine DF
with aWO. To update the remaining probabilities after removing a (monitored)
prediction with the help of the WO, we use a softmax again. However, due
to how the softmax function is defined, it emphasizes differences in values
above one and actually de-emphasizes values between zero and one [16]. This
is problematic for us because all values we send through the softmax are
probabilities that per definition are between zero and one. To account for this,
we first divide each probability with the maximum probability and multiply
with a constant before performing the softmax. Through trial-and-error, a
constant of five gave us a reasonable threshold in probabilities. Note that this
does not in any way affect the order of likely classes from DF, it simply puts
the probabilities in a span that makes it easier for us to retain a threshold value
between zero and one after multiple calls to the softmax function.

6.2 WTF-PAD and Walkie-Talkie
We use the original dataset of Sirinam et al. [75] that consists of 95 monitored
websites with 1,000 instances each as well as 20,000 unmonitored websites
(95x1k+20k). The dataset is split 8:1:1 for training, validation, and testing,
respectively. Given the dataset and our changes to DF to not do binary classifi-
cation means that our testing dataset is unbalanced in terms of instances per
class. Therefore we show precision-recall curves generated by alternating the
threshold for DF with and without WO access.

Figure 6 shows the results of DF and DF+WO with a simulated WO on
Sirinam et al.’s dataset with no defense (Figure 6a), Walkie-Talkie (Figure 6b),
and WTF-PAD (Figure 6c). For the WO we use a 100 ms timeframe and plot
the results for different starting Alexa ranks of the 95 monitored websites.
Regardless of defense or not, we observe that for Alexa ranks 1k and less
popular websites the precision is perfect (1.0) regardless of threshold. This
indicates that—for an attacker monitoring frontpages of websites—a 100 ms
WO significantly reduces false positives for two-thirds of all website visits made
over Tor, for the vast majority of potentially monitored frontpages of websites.
Recall is also slightly improved.

For Walkie-Talkie we observe a significant improvement in precision due to
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(a) No defense. (b) Walkie-Talkie [87].

(c) WTF-PAD [37].

Figure 6: Attack simulation for Deep Fingerprinting (DF) with website oracles
(100 ms timeframe) on Sirinam et al.’s dataset [75]. The lines in each sub-figure
show DF with and without website oracle access for different starting Alexa
ranks for monitored websites.

WO access. Wang and Goldberg note that the use of popular websites as decoy
(non-sensitive) websites protects less-popular sensitive websites due to the base
rate: an attacker claiming that the user visited the less-popular website is (per
definition) likely wrong, given that the attacker is able to detect both potential
website visits [87]. Access to a WO flips this observation on its head: if a WO
detects the sensitive less-popular website, the base rate works in reverse. The
probability of an unpopular website being both miss-classified and visited in
the timeframe is small for all but the most popular websites. The key question
becomes one of belief in the base rate of the network and that of the target
user, as analysed in Appendix A.

Further, WO access improves both recall and precision for all monitored
websites against WTF-PAD.WTF-PAD only provides a three percentage points
decrease in recall compared to no defense for monitored websites with Alexa
ranks 1k and above.

6.3 CS-BuFLO and Tamaraw
To evaluate the constant-rate defenses CS-BuFLO and Tamaraw by Cai et
al. [7, 8] we useWang et al.’s dataset in the open world [85]. The dataset consists
of 100 monitored websites with 90 instances each and 9000 unmonitored
sites (100x90+9k), that we randomly split (stratified) into 8:1:1 for training,
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(a) No defense. (b) CS-BuFLO [7], with reported 67.2%
BOW and 575.6% TOH [13].

(c) Tamaraw [8], with reported 256.7%
BOW and 341.4% TOH [13].

Figure 7: Attack simulation for Deep Fingerprinting (DF) [75] with website
oracles (100 ms timeframe) on Wang et al.’s dataset [85]. The lines in each sub-
figure show DF with and without website oracle access for different starting
Alexa ranks for monitored websites.

validation, and testing. We had to increase the length of the input to DF for this
dataset, from 5000 to 25000, to ensure that we capture most of the dataset. To
get defended traces for CS-BuFLO and Tamaraw we use the slightly modified
implementations as part of Cherubin’s framework [13].

Figure 7 shows the results of our simulations. DF alone is also highly effec-
tive against the original Wang dataset—as expected—and our attack simulation
shows that we can further improve it with access to website oracles. Most
importantly, both CS-BuFLO and Tamaraw offer protection against DF with
and without oracle access by significantly lowering recall. Tamaraw offers an
order of magnitude better defense in terms of recall. As implemented in the
framework by Cherubin, CS-BuFLO and Tamaraw reportedly has BOH 67.2%
and 256.7%, and TOH 575.6% and 341.4%, respectively. This kind of overhead
is likely prohibitively large for real-world deployment in Tor [7, 8, 37, 75, 87].

6.4 DynaFlow
DynaFlow is a dynamic constant-rate defense by Lu et al. [47] with two con-
figurations that result in different overheads and levels of protection. Lu et al.
gathered their own dataset of 100 monitored websites with 90 instances each
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(a) No defense. (b) DynaFlow [47] config 1, with measured
59% BOH and 24% TOH.

(c) DynaFlow [47] config 2, with measured
109% BOH and 30% TOH.

Figure 8: Attack simulation for Deep Fingerprinting (DF) [75] with website
oracles (100 ms timeframe) on Lu et al.’s dataset [47]. The lines in each sub-
figure show DF with and without website oracle access for different starting
Alexa ranks for monitored websites.

and 9000 unmonitored websites (100x90+9k, same as Wang et al.’s [85]) to
be able to combine smaller packets, as discussed briefly in Section 2.3. As for
CS-BuFLO and Tamaraw, we had to increase the length of the input to DF for
this dataset to 25000 to ensure that we capture most of the dataset.

Figure 8 shows the results of our simulations for no defense as well as
the two configurations of DynaFlow. As for Wang et al.’s dataset [85], we
see as expected that DF is highly effective and WO access further improves
the attack. Further, both configurations of DynaFlow are effective defenses,
comparable to CS-BuFLO with significantly lower overheads at first glance.
However, note that the comparison is problematic due toDynaFlow combining
smaller packets. The extra overhead for config 2 over 1 is not wasted: recall is
significantly reduced, more than halved for regular DF and slightly less than
half with a WO.

7 Discussion
For defenses that are based on the idea of creating collision sets between packet
traces generated by websites, oracle access is equivalent to being able to perform
set intersection between the set of websites in a collision set and monitored
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websites visited at the time of fingerprinting. As the results show from Section 6,
some defenses can significantly reduce the recall of WF attacks with WOs, but
not the precision for the majority of websites and website visits in Tor.

Next, in Section 7.1 we further cement that our simulations show that
WOs significantly reduces false positives, highlighting that a WF+WO attacker
surprisingly infrequently have to query a WO when classifying unmonitored
traces. Section 7.2 discusses the impact of imperfect WO sources with lim-
ited observability and false positives on the joint WF+WO attack. Finally,
Section 7.3 covers limitations of our work, and Section 7.4 discusses possible
mitigations.

7.1 A Large Unmonitored Dataset
We look at the number of false positives for a large test dataset consisting of
only unmonitored websites (representing a target user(s) with base rate 0, i.e.,
that never visits any monitored website). Using the dataset of Greschbach et
al. [26], we trained DF on 100x100 monitored and 10k unmonitored websites
(8:2 stratified split for validation), resulting in about 80% validation accuracy
after 30 epochs (so DF is clearly successful also on this dataset). We then tested
the trained classifier on only 100k unmonitored traces, with and without oracle
access (100ms resolution) for different assumptions of the popularity of the
monitored websites. With ten repetitions of the above experiment, we observed
a false positive rate in the order of 10−6 for monitored websites with Alexa
popularity 10k. Excluding torproject.org, this indicates that an attacker
would have close to no false positives for about half of all website visits in Tor,
according to the distribution of Mani et al. [49] (see Section 5.1). Without
access to a WO, DF had a false positive rate in the order of 10−3 to 10−4,
depending on the threshold used by the attacker.

Recall how WOs are used as part of WF+WO attacks in Section 3.2: the
WO is only used if the WF attack classifies a trace as monitored.1 This means
that, in the example above, the WO is used on average every 103 to 104 trace,
to (potentially) rule out a false positive. Clearly, this means that WO sources
that can only be used infrequently, e.g., due to caching as in DNS, are still
valuable for an attacker.

7.2 Imperfect Website Oracle Sources
Our analysis considered an ideal source of a WO that observes all visits to
targetedmonitored websites of the attacker and that produces no false positives.
Next, using the same dataset and setup as for Figure 6a with an Alexa starting
rank of 104, we simulate the impact on recall and the False-Negative-to-Positive-
rate2 (FNP) of the joint WF+WO attack for five false positive rates of the WO

1For WF attacks like DF that produces a list of probabilities (Definition 3), just assume that
the attacker picks the threshold and checks if the probability is above as part of the if-statement
before using the WO.

2For a classifier with multiple monitored classes and an unmonitored class (as for our modified
DF, see Section 6.1), FNP captures the case when the classifier classifies an unmonitored testing

torproject.org
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Figure 9: How limited WO observability effects the final recall of a WF+WO
attack for five different WO false positive rates.

and a fraction of observed website visits.
Figure 9 shows the impact on the joint recall in the above setting. We see

that recall is directly proportional to the fraction of observed visits, as per the
results of Greschbach et al. [26]. Further, false positives for the WO have a
positive impact on the fraction of recall, counteracting visits missed due to
limited observability. For the same reason, a larger timeframe or monitoring
more popular websites would also improve recall.

Figure 10 shows the impact on the joint FNP. Note that lower FNP is
better for an attacker. We see that limited observability has no impact on FNP.
This makes sense, because a WO cannot confirm anything it does not observe.
The FNP fraction for the joint FNP is roughly proportional to the FP of the
WO. We also see that the FNP fraction consistently is above the FP of the WO:
this is because—beyond the simulated FP—there is a slight probability that
someone else (in our simulation of the Tor network) visited the website for
each classified trace. A larger timeframe or monitoring more popular websites
would also increase FNP.

From above results, our simulations indicate that even with a deeply imper-
fect WO source an attacker can get significant advantage in terms of reduced
false positives at a comparatively small cost of recall. For example, given a WO
with 50% observability and false positives, the resulting WF+WO attack has
about 75% of the recall of the WF attack and slightly more than half the false
positives.

7.3 Limitations
As discussed in Section 2.3, there are a number of practical limitations in
general for WF attacks. Regarding attacker goals, WOs are likely less useful for
the purpose of censorship than for other goals. Many sources of WOs cannot
be accessed in real-time, giving little utility for an attacker that needs to make a

trace as any monitored class. In addition to FNP, such a classifier can also confuse one monitored
website for another. Both these cases are false positives [84].
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Figure 10: How limited WO observability effects the final False-Negative-to-
Positive-rate (FNP) of a WF+WO attack for five different WO false positive
rates. Lower is better.

near real-time censorship decision. An attacker that only wants to detect visits
to a few selected monitored websites gains significant utility from WOs, as
long as the detection does not have to be in real-time. It is also noteworthy that
an attacker that wants to detect all possible website visits by a victim can use
the WO to in essence “close the world” from all possible websites to only those
visited over Tor while the victim is actively browsing. Granted, this requires
a source for the WO that is slightly different from our definition, but some
do offer this: e.g., an attacker that gains comprehensive control over the DNS
resolvers used by Tor exits [26].

When it comes to false positives a significant limitation of our simulations
is that we consider fingerprinting the frontpages of websites and not specific
webpages. Several sources or WOs are not able to detect webpage visits. This is
also true for subsequent webpage visits on the same website after first visiting
the frontpage of a website (e.g., DNS and OCSP will be cached). An attacker
with the goal of detecting each such page visit will thus suffer more false
positives or fail at detecting them for some sources of WOs.

7.4 Mitigations
The best defense against WOs is WF defenses that significantly reduce the recall
of WF attacks. In particular, if an attacker can significantly reduce the website
anonymity set after accounting for information from the WO, then attacks
are likelier to succeed. This implies that most websites need to (at least have
the potential to) result in the same network traces, as we see with DynaFlow,
Tamaraw, and CS-BuFLO.

For onion websites we note that the DHT source of a WO from Section 4
is inherent to the design of onion services in Tor. Defenses that try to make it
harder to distinguish between regular website visits and visits to onion websites
should also consider this WO source as part of their analysis, in particular for
v2 onion services.
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Finally, some sources of WOs could be minimized. If you run a potentially
sensitive website: do not use RTB ads, staple OCSP, have as few DNS entries as
possible3 with a high TTL, do not use CDNs, do not retain any access logs, and
consider if your website, web server, or operating system have any information
leaks that can be used as an oracle. If you run a Tor exit, consider not using
Google or Cloudflare for your DNS but instead use your ISP’s resolver if
possible [26].

8 Related Work
The combination of a WF attack with a WO is a type of Classify-Verify method
as proposed by Stolerman et al. [76], which in turn is a type of rejection
function as described by Chow [14]. Such a method was first used in the
context of WF by Juarez et al. [36] and later by Greschbach et al. [26] to
augment WF attacks with inferences from observed DNS traffic. Note that
the attack by Greschbach et al. can be seen as a probabilistic WO due to the
attacker under their threat model only observing a fraction of DNS traffic from
the Tor network. Our work builds upon and generalises their work where
DNS traffic is just one of many possible sources to infer website visits from.
Further, our DNS-based sources are usable by anyone instead of relatively
strong network attackers (or Google or Cloudflare).

All anonymity networks produce anonymity sets (per definition) that
change with observations by an attacker over time [68]. Modelling the be-
haviour of an anonymity system (as a mix), what the attacker observes, and
how the anonymity sets change over time allows us to reason about how the
attacker can perform traffic analysis and break the anonymity provided by
the system [21, 38, 73]. Attacks along these lines are many with more-or-less
consistent terminology, including intersection attacks, (statistical) disclosure
attacks, and traffic confirmation attacks [4, 17, 18, 19, 39, 68, 69, 81].

WOs are nothing more than applying the notion of anonymity sets to the
potential destination websites visited over an anonymity network like Tor
and giving an attacker the ability to query this anonymity set for membership
for a limited number of monitored websites. The way we use WOs in our
generic attacks is not to learn long-term statistically unlikely relationships between
senders and recipients in a network. Rather, the WO is only used to learn
part of the anonymity set at the time of the attack. That an attacker can observe
anonymity sets is not novel, what is novel in our work is how we apply it to
the WF domain and argue for its inclusion as a core attacker capability when
modelling WF attacks and defenses.

Murdoch and Danezis showed how to use observed latency in Tor as an
oracle to perform traffic analysis attacks [54]. Chakravarty et al. detailed
similar attacks but based on bandwidth estimation [11] and Mittal et al. using
throughput estimation [53]. Attackers in these cases do not need to be directly

3As noted by Greschbach et al. [26], websites may have several unique domain names. Each of
those could be used independently to query several sources (e.g., DNS) of WOs.
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in control of significant fractions Tor, but rather use network measurements to
infer the state of the network and create an oracle that an attacker can utilize,
similar to WOs.

Correlation of input and output flows is at the core of many attacks on
anonymity networks like Tor [6, 35, 78]. Flow correlation attacks correlate
traffic on the network layer, considering packet sizes and timing of sent traffic.
The RAPTOR attack by Sun et al. [78] needs about 100MB of data sent over
five minutes to correlate flows with high accuracy. The recent state-of-the-
art attack DeepCorr by Nasr et al. [56]—based on deep learning like Deep
Fingerprinting by Sirinam et al. [75]—needs only about 900KB of data (900
packets) for comparable accuracy to RAPTOR. While flow correlation attacks
like RAPTOR and DeepCorr operate on the network layer, WF+WO attacks
can be viewed as application layer correlation attacks. WF attacks extract
the application-layer data (the website) while WOs reconstruct parts of the
anonymity set of possible monitored websites visited. WF attacks need to
observe most of the traffic generated when visiting a website that goes into the
anonymity network. While a WO does not have to directly view any of the
output flows of the network, it needs to be able to infer if a particular website
was visited during a period of time, as shown in Section 4.

9 Conclusions
WF+WO attacks use the base rate of all users of the network against victims,
significantly reducing false positives in the case of all but the most popular
websites visited over Tor. This is troubling in many ways, in part because
presumably many sensitive website visits are to unpopular websites used only
by local communities in regions of the world where the potential consequences
of identification are the worst.

The threatmodel of Tor explicitly states that Tor does not consider attackers
that can observe both incoming and outgoing traffic [22]. Clearly, a WO gives
the capability to infer what the outgoing traffic of the network encodes on
the application layer (the website visits). This is in a sense a violation of Tor’s
threat model when combined with a WF attacker that also observes incoming
traffic. However, we argue that because of the plethora of possible ways for
an attacker to infer membership in the anonymity sets of Tor, WOs should
be considered within scope simply because Tor asserts that it is an anonymity
network.

While the real-world impact of WF attacks on Tor users remains an open
question, our simulations show that false positives can be signficantly reduced
by many attackers with little extra effort for some WO sources. Depending
on WO source, this comes at a trade-off of less recall. For many attackers and
attacker goals, however, this is a worthwhile trade. To us, the threat of WF
attacks appears more real than ever, especially when also considering recent
advances by deep learning based attacks like DF [75] and DeepCorr [56].
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A Bayes’ Law for Estimating Utility of Website
Oracles

To reason about the advantage to an attacker of having access to a WO, we esti-
mate the conditional probability of a target user visiting a monitored website.
For conditional probability we know that:

P (C0 ∩C1) = P (C0 |C1)P (C1) (1)

For a hypothesis H given conditional evidence E , Bayes’ theorem states
that:

P (H |E) = P (E |H )P (H )
P (E) (2)

https://gitweb.torproject.org/torspec.git/tree/rend-spec-v2.txt
https://gitweb.torproject.org/torspec.git/tree/rend-spec-v2.txt
https://gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt
https://gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt
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Assume that E = E0 ∩ E1, then:

P (H |E0 ∩ E1) =
P (E0 ∩ E1 |H )P (H )

P (E0 ∩ E1)
(3)

Substituting P (E0 ∩ E1) with (1) we get:

P (H |E0 ∩ E1) =
P (E0 ∩ E1 |H )P (H )
P (E0 |E1)P (E1)

(4)

For a timeframe t , we define

H the probability that target user(s) visited website w over Tor in t

E0 the probability that target user(s) visited a website over Tor in t

E1 the probability that someone visited website w over Tor in t

We see that P (E0 ∩ E1 |H ) = 1 by definition and get:

P (H |E0 ∩ E1) =
P (H )

P (E0 |E1)P (E1)
(5)

Consider P (E0 |E1): while the conditional E1 may have some minor affect
on user behaviour (in particular for overall popular websites), we assume that
the popularity of using Tor to visit a particular website (by any of the users of
Tor) has negligible impact on E0 and treat E0 and E1 as independent:

P (H |E0 ∩ E1) =
P (H )

P (E0)P (E1)
(6)

We can further refine P (H ) as being composed of at least:

P (H ) = P (E0) ∩ P (Bw ) = P (E0 |Bw )P (Bw ) (7)

Where P (Bw ) is the base rate (prior) of the user(s) visiting website w out
of all possible websites they visit (P (E0) ). We again assume (perhaps naively)
that E0 is also independent of Bw , which gives us:

P (H |E0 ∩ E1) =
P (E0)P (Bw )
P (E0)P (E1)

=
P (Bw )
P (E1)

(8)

In other words, if an attacker learns that target user(s) visited a website (E0 )
over Tor and that website w was also visited over Tor by some user (E1 ), then
we can estimate the probability that it was target user(s) that visited website w
(H ) as the ratio between the base rate (prior) for visiting w of target user(s)
(Bw ) and the probability that someone visited the website over Tor (E1), all
within a timeframe t .

Figure 11 shows the results for simulating the probability P (H |E0 ∩ E1)
for different website popularities of w , base rates, and timeframes. We see that
with a realistic timeframe of 100 ms, for all base-rates but 10−6 there is non-zero
conditional probability (and therefore utility of WO access) for Alexa top 100k
or less popular websites, which covers about half of all website visits over Tor
(excluding torproject.org).

torproject.org
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(a) 10 ms (b) 100 ms

(c) 1000 ms

Figure 11: The conditional probability as a function of user base rate and
website popularity (Alexa) for three different timeframes.

B Lessons from Simulation
With the ability to simulate access to WOs we can now simulate the entire
website anonymity set for Tor. To get a better understanding of why WOs are
so useful for an attacker performing WF attacks, we look at two results from
the simulation below.

B.1 Time Until Website Visited over Tor
Figure 12 shows the time until there is a 50% probability that a website has
been visited over Tor depending on website popularity (Alexa, as discussed in
Section 5.1). Within ten seconds, we expect that most of Alexa top 1k has been
visited. Recall that this represents about one third of all website visits over Tor.
The less popular websites on Alexa top one-million represent another third
of all visits, quickly approaching hundreds of seconds between visits. For the
remaining third of all website visits we expect them to be even less frequent.

B.2 Visits Until First False Positive
Assume that target user(s) have a base rate of 0, i.e., they never visit the
attacker’s monitored websites. With WO access, we can determine how many
(naively assumed independent) website visits it at least takes until there is a
50% chance that the attacker’s classifier gets a false positive. This is because
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Figure 12: The simulated time until there is a 50% probability that a website
for different Alexa ranks has been visited over Tor.

Figure 13: The number of website visits until there is a 50% probability that a
website oracle would contribute to a false positive.

if the attacker’s website classifier without oracle access always returns a false
positive, then the false positive rate by the WF+WO attack will be determined
by when the WO says that the—incorrectly classified as monitored—website
has been visited. Figure 13 shows the expected number of visits by the victim(s)
for different timeframes based on the popularity of the monitored websites.
Note that the attacker per definition chooses which websites are monitored
and can therefore take the probability of false positives into account.

C Sources of Website Oracles
There are a wide number of possible sources to instantiate WOs. Here we
present some details on a selection of sources, far from exhaustive.

C.1 Surveillance Programmes
Intelligence agencies operate surveillance programmes that perform bulk collec-
tion and retention of communications metadata, including web-browsing [48].
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For example, the Snowden revelations included Marina:

Of the more distinguishing features, Marina has the ability to look
back on the last 365 days’ worth of DNI (Digital Network Intel-
ligence) metadata seen by the Sigint collection system, regardless
whether or not it was tasked for collection [27].

Another example is the prevalence of nation states to monitor Internet
traffic that crosses geographic borders. For example, China operates the Great
Firewall of China that is also used for censorship purposes. Due to the nature
of Tor and how exits are selected, visits to websites that are not operated by
world-wide reaching hosting providers are highly likely to cross multiple nation
borders as traffic goes from an exit to the website. It is also worth to highlight
that any sensitive website hosted from within a country where a state actor is
interested in identifying visitors are likely to capture traffic to that website due
to the Tor traffic crossing its borders more often than not.

C.2 Content Delivery Networks
Content Delivery Networks (CDNs), such as Akamai, Google, and Amazon
host different types of content for a significant fraction of all websites on the
Internet [72]. Inherently, all requests for these resources are easily identified as
coming from Tor exits, and depending on content, things like unique identifiers
and HTTP referrer headers enable the CDN provider to infer the website the
content is hosted on.

C.3 Internet Giants
Internet giants like Google, Apple, Facebook, Amazon, Microsoft, and Cloud-
flare make up a large fraction the web as we know it. For example the use of
Google Analytics is wide-spread, so is hosting in clouds provided by several of
these giants, and Cloudflare with its “cloud network platform” hosts over 13
million domains [32]. While some of them may do what is in their power to
protect the valuable data they process and retain, they are still subject to many
legal frameworks across the world that might not offer the best of protections
for, say, access logs pertaining to “anonymous” users of Tor when requested by
authorities of nation states. As another example, Cloudflare offers a nice API
for their customers to get their access logs with Unix nanosecond precision.
The logs are retained for up to seven days [31], giving ample time for legal
requests.

C.4 Access Logs of Web Servers
The vast majority of web servers retain access logs by default. Typically,
they provide unix timestamps with seconds as the resolution (the case for
Apache and nginx). Further, the access logs may be shipped to centralised
security information and event management (SIEM) systems for analysis, with
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varying retention times and rigour in storage. For example, it is common
to “anonymize” logs by removing parts of the IP-addresses and then retaining
them indefinitely, as is the case for Google who removes part of IP addresses
in logs after nine months [44].

C.5 Middleboxes
Network middleboxes that observe, analyse, and potentially retain network
traffic abound. Especially in more oppressive countries, middleboxes are often
used for censorship or dragnet surveillance, e.g., as seen with Blue Coat in
Syria [1].

C.6 OCSP Responders
Chung et al. [15] found in a recent study that 95.4% of all certificates support
the Online Certificate Status Protocol (OCSP), which allows a client to query
the responsible CA in real-time for a certificate’s revocation status via HTTP.
As such, the browsed website will be exposed to the CA in question. From a
privacy-standpoint this could be solved if the server stapled a recently fetched
OCSP response with the served certificate. Unfortunately, only 35% of Alexa’s
top-one-million uses OCSP stapling [15].

Unless an OCSP response is stapled while visiting a website in a default
configuration of the Tor browser, the status of a certificate is checked in real-
time using OCSP. As such, any CA that issued a certificate for a website
without OCSP stapling could instantiate a WO with an RTT-based resolution.
Similarly, any actor that observes most OCSP traffic (which is in plaintext due
to HTTP) gets the same capability. To better understand who could instantiate
a WO based on OCSP we performed preliminary traceroute measurements4
on the RIPE Atlas network towards four OCSP responders that are hosted
by particularly large CAs: Let’s Encrypt, Sectigo, DigiCert, and GoDaddy.
Let’s Encrypt and Sectigo are fronted by a variety of actors (mainly due to
CDN caching), while DigiCert is fronted by a single CDN. Requests towards
GoDaddy’s OCSP responder always end-up in an AS hosted by GoDaddy.

C.7 Tor Exit Relays
Anyone can run a Tor exit relay and have it be used by all Tor users. Obvi-
ously, the operator of the exit relay can observe when its relay is used and the
destination websites. At the time of writing, the consumed exit bandwidth
of the entire Tor network is around 50 Gbit/s. This makes the necessary
investment for an attacker that wishes to get a decent chunk of exit bandwidth
more a question of stealthily deploying new exit relays than prohibitively large
monetary costs.

4Every RIPE Atlas probe used its configured DNS resolver(s). In total we requested 2048
WW-probes for one-off measurements.
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C.8 Information Leaks
More sophisticated attackers can look for information leaks at the application,
network, and operating system levels that allow them to infer that websites have
been visited. Application level information leaks are particularly of concern
for onion services: any observable state that can be tied to a new visitor is
a WO for an onion visit (this is not the case for “regular” websites). Such
state can include online status or the number of online users of a service, any
observable activity with timestamps, a predictable caching structure, and so
on. Similar information leaks can also occur on the network and operating
system level [10, 24, 66].
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Abstract

We show that Tor’s DNS cache is vulnerable to a timeless timing attack,
allowing anyone to determine if a domain is cached or not without any
false positives. The attack requires sending a single TLS record. It can
be repeated to determine when a domain is no longer cached to leak the
insertion time. Our evaluation in the Tor network shows no instances
of cached domains being reported as uncached and vice versa after 12M
repetitions while only targeting our own domains. This shifts DNS in
Tor from an unreliable side-channel—using traditional timing attacks with
network jitter—to being perfectly reliable. We responsibly disclosed the
attack and suggested two short-term mitigations.

As a long-term defense for the DNS cache in Tor against all types of
(timeless) timing attacks, we propose a redesign where only an allowlist
of domains is preloaded to always be cached across circuits. We compare
the performance of a preloaded DNS cache to Tor’s current solution
towards DNS by measuring aggregated statistics for four months from
two exits (after engaging with the Tor Research Safety Board and our
university ethical review process). The evaluated preload lists are variants
of the following top-lists: Alexa, Cisco Umbrella, and Tranco. Our results
show that four-months-old preload lists can be tuned to offer comparable
performance under similar resource usage or to significantly improve
shared cache-hit ratios (2–3x) with a modest increase in memory usage
and resolver load compared to a 100 Mbit/s exit. We conclude that Tor’s
current DNS cache is mostly a privacy harm because the majority of
cached domains are unlikely to lead to cache hits but remain there to be
probed by attackers.

1 Introduction
Tor [10] is a volunteer-operated anonymity network composed of relays that
route encrypted traffic with low latency. One of Tor’s trade-offs is to not
provide anonymity against a global passive attacker that observes traffic as it
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enters and leaves the network [9, 10]. A typical attacker setting is therefore
to only observe encrypted traffic as it enters the network from an identifiable
user, forcing traffic analysis of the encrypted packets to classify the user’s
behavior. An attacker that tries to classify visited websites is said to perform
Website Fingerprinting (WF) [5, 16, 17, 26, 32, 47]. Many questions about the
practicality of WF attacks have been raised, ranging from how to keep a trained
dataset updated to managing false positives [6, 21, 34, 49]. False positives inWF
may be ruled out using side-channels [21, 42]. For example, an attacker with
access to (traffic to [43]) Google’s public DNS resolver can use it to confirm if
a website visit really happened over Tor [13].

Side-channels that leak information about exiting traffic are in factmany [42].
For example, during the course of a website visit there may be interactions with
DNS resolvers, OCSP responders, real-time bidding platforms, and CDNs.
An attacker that is able to query or gain access to the resulting datasets learns
partial information about destination traffic, notably without ever observing
any of the exiting TCP flows typically associated with correlation attacks
on Tor [20, 30]. Depending on the ease of accessibility (e.g., does it require
Google reach), reliability (e.g., are there any false positives), and coverage (e.g.,
is it only applicable for a small fraction of exit traffic), the impact of a given
side-channel will be more or less urgent to address with mitigations and/or
defenses [10].

1.1 Timeless Timing Attacks in Tor’s DNS
Timing attacks exploit that an operation takes more or less time to execute
depending on something secret. The attacker’s goal is to infer the secret infor-
mation by merely observing the non-constant execution times, e.g., to recover
a private key [23], decrypt a ciphertext [1], or check if a domain is cached by
a Tor exit [42]. A remote timing attack takes place over a network. Repeated
measurements and statistics are usually required to account for network jitter,
which adds noise to the observed timings [8]. Van Goethem et al. [48] proposed
a technique that eliminates all network jitter in remote attacks. It is applicable
if two requests can be sent to arrive at the same time, request processing is
concurrent, and the order in which responses are returned reflects differences
in execution time.

We find that Tor’s DNS cache at exits fulfills all three criteria of a timeless
timing attack, allowing anyone to determine if a domain is cached or not by
sending a single TLS record. The attack is reliable (neither false positives
nor negatives), confirmed by using our prototype to make 12M network
measurements against our own domains. The attack is also repeatable, making
the exact time that a domain was inserted into the cache inferable due to
determinism in Tor’s TTL logic.

Figure 1 provides a summary of how the ability to infer whether domains
are (un)cached at exits make WF attacks more practical. The attacker observes
encrypted traffic from a client to a guard relay at time t , classifying the network
trace as associated with foo.org. The attacker then conducts timeless timing
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Figure 1: WF with an attacker that rules out false positives by checking that
the expected DNS records were cached at the right time by conducting timeless
timing attacks against exits.

attacks against all exits in the Tor network to determine if foo.org was really
visited by someone at time t . If the answer is yes the classification is accepted,
otherwise it is rejected. Prior work by Pulls and Dahlberg show that the capa-
bility to determine whether a website was visited from Tor at time t removes
virtually all false positives in WF attacks for all but the most popular websites
on the web [42]. We provide further evidence that this is a realistic capability
to assume by demonstrating that any attacker with an Internet connection could
have used it in attacks for the last two decades. While it is a powerful capability to
eliminate false positives, the overall success in linking users with their website
visits also depends on the WF attack [6, 21, 34, 49].

1.2 Preload Defenses and Measurements
Patching Tor’s DNS cache to resist (timeless) timing attacks is challenging
without hurting performance. For example, making all DNS lookups constant
time would defeat the purpose of having a cache. The idea of our long-term
defense is to remove harmful cross-circuit caching that is unlikely to boost
performance while still safely caching useful domains. The Tor-network mea-
surements of Mani et al. [28] tell us that web-traffic from the Tor network
matches that of the rest of the Internet, following popularity lists like Alexa [2].
What should boost cross-circuit performance is the upper parts of a representa-
tive popularity list; not the long tail of infrequently visited sites. This is the
intuition of our defense. Preload a list of popular domains that are cached and
continuously refreshed by all exits. A domain name is either always cached as
part of the preload list or not shared across circuits at all.

We conduct four months of measurements in the live Tor network to
evaluate 400 popularity lists derived from Alexa [2], Cisco Umbrella [7], and
Tranco [25]. To put our results into perspective, we also measure a baseline of
Tor’s current DNS cache performance. The measurement method is to collect
aggregated counters every 15 minutes, e.g., the number of lookups cache-hits,
and memory overhead, from two 100 Mbit/s relays with web and permissive
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exit port policies.
Tor’s mean cross-circuit cache-hit ratio is currently 11% (web) and 17% (per-

missive). Variants of Alexa/Tranco top-200 (web) and Alexa/Tranco top-700
(permissive) achieve the same cross-circuit cache-hit ratios. A preload list from
the top-10k can achieve 2–3 times higher cross-circuit cache-hit ratios at the
cost of at most 60 MiB memory and some increased resolver load (manageable
in part due to RFC 8767 [24]). Throughout the entire measurement we noted
only a slight decline in effectiveness while using stale preload lists (i.e., when
using four-month-old lists at the end). This adds to the feasibility of using
preload lists, as in practice someone has to assemble and deliver them to all
exits in the Tor network.

1.3 Contributions and Outline
Our contributions are as follows:

• Performance measurements of the DNS cache in Tor over four months
from two exits, showing an average 80–83% cache-hit ratio with approxi-
mately 10,000 entries in the cache; around 11–17% of the observed cache
hits are due to the cache being shared across circuits, and the number of
lookups appears weakly correlated with exit probability (Section 3).

• Demonstration of a timeless timing attack that probes for cached domains
in Tor’s DNS cache without any false positives or false negatives after
12M repetitions against our own domain in the Tor network (Section 4).

• Mitigations based on fuzzy TTLs and cover lookups that add some
limited short-term protections (Section 5).

• A long-term redesign of Tor’s DNS cache that defends against (timeless)
timing attacks. Cache-hit ratios can be tuned to offer comparable perfor-
mance under similar resource usage as today or to significantly improve
shared cache-hit ratios (2–3x) with a modest increase in memory usage
and resolver load, notably invariant to exit probability as preload lists
are fixed (Section 6).

Section 2 provides necessary background on DNS and Tor, Section 7 dis-
cusses related work, and Section 8 offers conclusions, followed by the availabil-
ity of our research artifacts.

We would like to highlight that Sections 3.1, 4.4, and 6.4 describe ethical
and safety precautions to ensure that no users were harmed by our research
and to maximize its positive impact. We responsibly disclosed our timeless
timing attack to the Tor Project and engaged with the Tor Research Safety
Board as well as our university’s ethical review process as part of performing
network measurements to inform our defenses.



Timeless Timing Attacks and Preload Defenses in Tor’s DNS Cache 173

2 Background
The remainder of the paper requires preliminaries about DNS (Section 2.1), in
particular in relation to Tor (Section 2.2).

2.1 DNS
DNS is a hierarchical system that maps domain names (“domains”) to IP
addresses. The hierarchy is composed of root servers, top-level domain (TLD)
servers, and authoritative name servers. Root servers are aware of TLD servers
like .com. TLD servers are aware of authoritative name servers in their zone
like example.com. Authoritative name servers are aware of the actual answers
to a domain lookup. A domain lookup for example.com involves asking the
root server for the TLD server of .com; the TLD server for the authoritative
name server of example.com; and finally the authoritative name server for
the IP address of example.com. The resolve process is typically performed
iteratively in plaintext over UDP by a third-party resolver that caches responses,
e.g., to improve performance. The default is usually to rely on ISP DNS
resolvers. It is also possible to configure other ones, e.g., Google’s 8.8.8.8 or
self-hosted using unbound, bind, etc.

Of note is that the resolved domains are associated with a Time To Live
(TTL) value. As the name suggest, it is the amount of time that a resolved
domain should be considered fresh. TTL values are sometimes overridden in
caches to improve reliability [24, 29] or preserve privacy [13].

2.2 Tor
The Tor network is composed of thousands of relays that route encrypted
traffic on behalf of millions of daily users [10, 28]. Ordinary uses of Tor
include preserving privacy, safety and freedom as well as facilitating dissent and
circumventing censorship [14, 44]. Access to the Tor network is easy using
Tor Browser (TB), which is configured to proxy all traffic through a local Tor
process that takes care of routing. TB adds many other protections that are
orthogonal to our work [35].

During a regular website visit a circuit is built through a guard, middle, and
exit relay. The first relay is fixed in a small guard set that rarely changes once
selected, while the middle and exit relays are randomly selected weighted by
bandwidth for each new circuit. A circuit may havemany streams (analogous to
TCP/IP connections), typically corresponding to separate flows for a particular
destination. Control traffic and data is transported through the network in
fixed-size cells that are encrypted in layers. At each hop in a circuit, one layer
of encryption is peeled-off. Outstanding cells from relay A to relay B are sent
in a shared channel that is TLS protected. Public keys, relay identities, and
more are discovered in Tor’s consensus, which is secure if a threshold of trusted
directory authorities act honestly.
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We are particularly interested in how Tor interacts with DNS. To look
up a domain, the user’s Tor process may send a RESOLVE cell that requests
resolution by the exit. Some exits are configured with their own iterative
resolvers, while others rely on DNS from their ISP or other third-parties [13].
The answer to a lookup is stored in the exit’s cache, but with the TTL clipped
to 300 or 3600 seconds depending on if the TTL is ≤ 300 seconds or not. A
RESOLVED cell is then sent to the user, who only gets to see the clipped
TTL regardless of how long it has been stored in the cache to avoid leaking
information about past exit traffic (like the insertion time which would be
trivial to infer from a counted-down TTL). If too many entries are added to
Tor’s DNS cache and memory becomes a scarce resource, an Out-Of-Memory
(OOM) job deletes domains until freeing enoughmemory. This is all controlled
by an event-driven single-threaded main loop.

Of further note is that TB is based on Firefox. As part of connecting to a
website, DNS is handled transparently through a SOCKS proxy provided by
the local Tor process. Requests to connect to a domain through the SOCKS
proxy results in the user’s Tor process sending a BEGIN cell to establish a
connection to the destination, which in turn triggers domain resolution at the
exit. In other words, there are two ways to look up domains: RESOLVE cells
and BEGIN cells. At no point is any resolved IP address cached in TB or in
the user’s Tor process. This prevents shared state (the cache) from being used
to fingerprint a user’s activity across different circuits.

We continue our introduction to Tor’s DNS cache next while describing
the first measurement of its performance.

3 Tor’s DNS Cache Today
To better understand the DNS cache of Tor today, we set out to collect perfor-
mance metrics from exits in the live Tor network. Section 3.1 covers ethical
considerations, followed by data collection in Section 3.2 and resulting metrics
in Section 3.3.

3.1 Ethical Considerations
We submitted a proposal to the Tor Research Safety Board describing mea-
surements that would ultimately inform the design of a long-term defense
(Section 6) against our improved attack (Section 4). To be able to assess the
impact of the defense we needed to better understand the DNS cache Tor has
today as a baseline. After a couple of iterations with the Tor Research Safety
Board we reached consensus, and then successfully completed our university’s
ethical review process. The proposal also included measurements needed for
our defense, described later in Section 6.3. During the measurements period of
four months we consulted the Tor Research Safety Board to discuss our results.

The intuition of our measurement is as follows. Two exit relays are operated
to collect counters related to domain lookups. For example, the number of
lookups and cache hits (Section 3.2). These counters are the result of all
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traffic at the exit, aggregated over 15 minutes intervals before being written to
disk and then reset in memory. Based on an exit probability of about 0.0005
(≈ 100Mbit/s), we extrapolated from the measurements of Mani et al. [28] that
we should expect about 725 website visits during 15 minutes. Each website visit
typically triggers multiple domain lookups [13] that affect our global counters.
A collection interval of 15 minutes should thus aggregate hundreds of website
visits for a small fraction of the network, making the resulting dataset hardly
useful for an attacker performing correlation or confirmation attacks on the
network. This sketch appears to be confirmed by our measurement results: out
of 23,632 15-minute intervals, only 18 contained less than 1,000 lookups. Our
conclusion together with the Tor Research Safety Board was that the resulting
dataset should be safe to make public (further discussed later).

3.2 Data Collection
Two 100 Mbit/s exit relays were operated by volunteers on the premises of
DFRI1 from May 2 until September 3, 2022. One exit was configured in its
exit policy with web ports.2 The other relay was configured with permissive
ports to also allow non-web traffic.3 Otherwise the two exits were identical,
running on the same VM with a dedicated unbound process that had caching
disabled by setting the rrset-cache-size to zero (to avoid TTL biases). We
collected the following counters every 15 minutes at both exits:

timestamp UNIX timestamp when the data was collected.

lookups Total number of observed domain lookups.

hits_5m Number of cache hits with a TTL of 300 seconds.

hits_60m Number of cache hits with a TTL of 3,600 seconds.

hits_pending Number of cache hits with a pending resolve, i.e., an answer
has been requested but is not yet available.

hits_same_circuit Number of streams that looked up a domain that was
previously looked up on the same circuit.

num_cache_entries Number of entries in Tor’s DNS cache.

A timestamp is needed to plot metrics as a function of time. Timestamps are
also crucial for the additional counters described in Section 6.3. The number
of lookups and different types of cache hits are needed to get a baseline of
cache-hit ratios. The number of entries in Tor’s DNS cache (at the time of
collection) is needed to get a baseline of memory usage. The necessary Tor
changes to collect all metrics (including Section 6.3) were relatively modest:
400 lines of code.

1More information about DFRI can be found at their website: https://www.dfri.se.
2Reject all ports except 80 and 443. (The exit can still do DNS for users.)
3Allow all ports except 25, 119, 135–139, 445, 563, 1214, 4661–4666, 6346–6429, 6699, and

6881–6999.

https://www.dfri.se
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Figure 2: Lookups every 15 minutes and exit probability.
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Figure 3: Cache entries every 15 minutes.

3.3 Metrics
Regarding lookups per 15 minutes, the web exit processed a mean of 17,530
and median of 13,393 lookups (Figure 2a), and the permissive exit processed
a mean of 41,100 and median of 26,940 lookups (Figure 2b). The permissive
exit policy results in significantly more lookups. Around August 1, our exits
experienced downtime, visible as dips in lookups in both figures (at times
fewer than 1,000 lookups, as noted in Section 3.1). Exit probability is weakly
correlated with lookups: Pearson correlation 0.30 (web) and 0.16 (permissive).

Figures 3a and 3b show the number of entries in Tor’s DNS cache. The web
exit has a mean of 7,672 and median of 7,325 entries, and the permissive exit
a mean of 12,130 and median of 11,408 entries. Both appear relatively stable
compared to the number of lookups (note log-scale y-axis in Figure 2). Likely,
this is because traffic on the Tor network is not uniformly distributed, but
rather concentrated to relatively few destinations, e.g., as shown with website
popularity [28].

Central to a DNS cache is its cache-hit ratio: how often lookups can be
resolved using cached entries instead of asking DNS resolvers. Figures 4a
and 4b show the cache-hit ratios for the two exits, with a mean cache-hit ratio
of 0.80 (web) and 0.83 (permissive). We also show if the cache hits occurred
due to a cache entry used earlier on the same circuit (“same”) or from another
circuit (“shared”). Further, over all the cache hits, we show if the hits were
because of DNS entries with a five-minute cached TTL (“5min”), a 60-minute
cached TTL (“60min”), or pending entries in the DNS cache (“pending”). Same
circuit hits are likely due to Tor Browser improving performance by creating
multiple streams to the same destination. The cross-circuit cache-hit ratio is
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Figure 4: Cache-hit ratio every 15 minutes. The total ratio can be split by
same+shared hits or 60min+5min+pending hits.

much smaller (“shared”) with a mean of 0.11 (web) and 0.17 (permissive). We
return to these ratios in Section 6.5 to compare with our defense.

During the four months of measurements, our exits experienced sporadic
downtime (early August) and the Tor-network endured significant network
DDoS activities [37]. This shows in our data, e.g., with the drop to close to
zero lookups in Figure 2, huge spikes of cached entries in Figure 3, and periods
where the cache-hit ratio was almost one in Figure 4.

To summarize, Tor’s DNS cache has a cache-hit ratio over 80% using a
modestly sized DNS cache. About 11–17% of these hits are due to sharing the
cache across circuits. The number of lookups are weakly correlated to exit
probability.

4 Timeless Timing Attack
Past work demonstrated timing attacks against Tor’s DNS cache [42]. In short,
anyone can observe the latency of a domain lookup to determine if it is more or
less likely that an answer is (not) cached. A quick response is more likely to be
cached, thereby leaking information about past traffic on an exit. A downside
of such a remote timing attack is that it is subject to network jitter while
traversing hops in the Tor network. We show how to bypass this limitation
by constructing a timeless timing attack that is immune to network jitter [48].
Notably the attack only requires Internet access and a very modest computer.

Section 4.1 outlines the attack, followed by a description of our prototype
implementation in Section 4.2, evaluation in Section 4.3, as well as ethical
considerations in Section 4.4.
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Figure 5: Processing of an incoming RESOLVE cell at an exit relay. Answers
of concurrent resolves are triggered by events.

4.1 Detailed Description
An exit’s processing of an incoming RESOLVE cell depends on if an answer
is cached or not, see Figure 5. An answer may already be available and a RE-
SOLVED cell can be scheduled for sending immediately (“cached”). Otherwise
an answer is not yet available and a resolve process needs to take place concur-
rently to avoid blocking (“uncached”). We construct a timeless timing attack by
exploiting the fact that scheduling RESOLVED cells for sending with different
concurrent timings depend on if an answer is cached (send immediately) or
uncached (send based on an event later on) [38].

4.1.1 Attack Outline

Suppose that we craft two RESOLVE cells for example.com and evil.com
such that they are processed by an exit directly after each other without any events
in between. Further suppose that evil.com is cached. The first RESOLVE cell
is example.com. The second RESOLVE cell is evil.com. Following from the
flow in Figure 5, we can determine if example.com is (un)cached by observing
only the order in which the two RESOLVED cells come back. The order will
be switched if example.com needs concurrent resolving because the answer is
not available until after an event (uncached). Otherwise the order is preserved
(cached). Sending two requests to be processed at the same time and exploiting
concurrency as well as differences in processing time that affects the response
order is what makes it timeless [48].

Figure 6 provides a detailed description on how to satisfy the presumed
setup. The attacker starts by looking up its own domain name for a selected
exit. This ensures that evil.com is cached. Next, two RESOLVE cells are
sent in the same TLS record from a hop proceeding the exit. Both cells will be
unpacked at the same time by TLS [39], and when processing starts all available
cells will be handled before giving control back to Tor’s main loop [40]. Now
recall that Tor is single-threaded. An event from any concurrent DNS resolve
can thus not be completed before all unpacked cells were fully processed. This
ensures that the order in which our two RESOLVED cells come back in is
guaranteed to leak if example.com is (un)cached as long as both RESOLVE
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Figure 6: The attacker ensures a domain evil.com is cached. Next, two
RESOLVE cells are sent to arrive at the same time in-order. The relay processes
both cells before triggering any resolve event. This means that answers can
only be sent directly if no resolving is needed. The order of RESOLVED cells
switch if example.com is uncached. Otherwise the order is preserved.

cells arrived together in-order and evil.com is really cached.
It should be noted that an attacker can gain full control of how their TLS

records are packed to exits by either running a modified Tor relay or creating
one-hop circuits. In practise, it is also possible to omit the step of caching
evil.com and instead send a RESOLVE cell containing an IP address. Tor will
simply echo the IP as if it was cached [41]. We describe the attack without this
optimization because it is more general.

4.1.2 Repeated Attack to Learn Insertion Time

So far we described how to determine if a domain is (un)cached at an exit.
Figure 7 shows how to derive the exact time that a domain was added to an exit’s
DNS cache. First determine whether the domain’s TTL will be clipped to 300
or 3,600 seconds by observing the TTL returned from the authoritative name
server or the configured resolvers of the exit [13]. Then repeat the timeless
timing attack periodically until the domain is no longer cached, say, once per
second. Suppose the expected clip is 300 seconds and the attack started at time
t . If it takes x < 300 seconds for the entry to become uncached, it was added
to the exit’s DNS cache at time t + x − 300s. Observing x > 300 seconds
means that a different party inserted the entry into the cache between probes
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Figure 7: Repeated timeless timing attack to infer the exact time that a domain
was cached by someone at an exit relay. For example, if the expected clip is
300s (ttl ≤ 300s), the attack is repeated every second, and the observed x is
40s, then caching of example.com happened at time ≈ t − 260s.

(may happen for some of the most frequently looked-up domains, depending
on probing frequency). To recover, the attacker can perform the same steps
again until they succeed. For example, with two tries the initial insertion
happened at t + x − 600s. Notably these estimates cannot be more precise than
the attacker’s repetition interval.

4.1.3 Discussion

While an attacker can determine if a domain is cached by an exit and if so the
exact time it was added, the attacker cannot determine the number or timings
of lookups for a domain after entering the cache. In isolation, the attacker also
cannot determine which identifiable user cached a given domain.

It is easy to conduct the attack in parallel because probing for the status of
foo.org is completely independent from bar.org at the same relay as well
as other probes on different relays. In other words, an attacker can probe a
single domain on all exits simultaneously, many different domains at a single
exit, or both. Network-wide probes for the same domain may be detectable by
observing the DNS caches of multiple relays and correlating their contents.
However, note that a risk-averse attacker [3] may spread their probes over time
(five or sixty minutes) and domains (expected twelve domains per website on
Alexa top-1M websites [13]), if the goal is to confirm a website visit.

An example use-case for a parallel attack is answering network-wide queries,
for example, “is foo.org visited more frequently than bar.org, or did any Tor
user visit baz.org at a particular point in time?” The latter is an instantiation
of a so-called website oracle [42]. Website oracles remove virtually all false
positives in WF attacks for all but the most popular websites on the web, and
WF attacks may connect identifiable users with visited websites. See Figure 1
in Section 1 for an overview of this attack setting.
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Figure 8: Local attack setup consisting of carml to build one-hop circuits,
tor-resolve to inject queries, and a patched tor process that transforms them
into timeless timing attacks.

4.2 Prototype Implementation
We prototyped our timeless timing attack so that it runs for a given exit and
a list of domains. Figure 8 shows the overall setup which consists of carml,
tor-resolve, a locally patched Tor process, and a Python script automating
the entire setup. First Tor is started, a one-hop circuit is built to the selected
exit, and all streams are attached to it using carml. Next, tor-resolve is
used to send a special lookup query for example.com by simply appending
a magic string –-sc. The patched Tor process splits such requests into two
RESOLVE cells in the same TLS record: one for the specified domain, and
another one that is guaranteed to not need any concurrent resolving. Finally
Tor sets the output to 0.0.0.0 if the resulting RESOLVED cells switched
order, otherwise 1.1.1.1 (arbitrary constants). After processing all domains
Tor is closed and the output is a list where each item is zero (uncached), one
(cached), or negative (unknown, e.g., due to a resolve timeout, a stream attach
failure, or a vanished circuit). The complete attack required less than 100 lines
of C to patch Tor, as well as 200 lines of Python to make it fully automated.

4.3 Network Measurements
We conducted measurements in the live Tor network to evaluate the reliability
of our prototype with four parallel instances of the setup in Figure 8 on a system
with an Intel(R) Xeon(R) CPU E5-2630 @ 2.30GHz and 4GB of DRAM. All
targeted domains were our own, see ethical considerations in Section 4.4. In to-
tal there were 14, 446 runs betweenMay 17–26, 2022. Each run used an exit that
was sampled uniformly at random. Assuming 1, 000 exits at all times (conser-
vative), the individual select probability should not exceed 0.004 per run. Each
run performed up to 1, 000 timeless timing attacks, chunked into 500 attacks
per circuit and alternating between uncached and cached lookups by specify-
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Table 1: Timeless timing attack results. Neither false negatives nor false posi-
tives were observed with 6M repetitions each.

Type Got uncached Got cached Failures
Uncached 6, 034, 779 0 2, 858
Cached 0 6, 034, 594 142

ing a unique domain twice in a row: <counter>.<timestamp>.<instance
id>.example.com. The maximum runtime was set to ten minutes. Each
query also had a ten second timeout. In the advent of errors like circuit failure
or timeouts, the remainder of the run was canceled but all results up until that
point were collected. The average number of DNS requests leaving the Tor
network from all four combined instances was 8.6 per second. The effective
queries per second was slightly higher due to brief pauses while setting up
a new run. For reference, Sonntag reported in 2018 that the DNS resolver
of an exit with 200Mbit/s received an average and maximum of 18 and 81
requests per second [45]. Earlier, Figure 2 also showed significant variability
in lookups. Handling our per-exit overhead during a couple of minutes should
thus be insignificant when compared to regular patterns for DNS traffic in the
network.

Table 1 summarizes our results. After 12M timeless timing attacks, there
were no cases of uncached lookups being reported as cached and vice versa.
This is consistent with the description in Section 4.1: neither false positives
nor false negatives are expected. The observed probability to not get an answer
due to detectable failures were 0.00025.

4.4 Ethical Considerations
We responsibly disclosed our attack to the Tor Project through their security
list. The submitted disclosure included a theoretical attack description, a
prototype implementation with measurements showing how reliable it was, as
well as a sketch of short-term and long-term defenses. As part of our dialog,
we also coordinated with the Tor Project on submitting this paper to USENIX
Security to get peer review.

The conducted network measurements targeted domains under our own
control. This ensured that we did not learn anything about real Tor users.
Performance overhead on exits and the Tor network at large was also modest,
see Section 4.3. In other words, the downsides were negligible while the signif-
icance of evaluating real-world reliability was helpful to inform and motivate
the need for mitigations and defenses.

5 Mitigations
Until a more comprehensive defense can be deployed we propose two short-
term mitigations that require little (fuzzy TTLs) or no (cover lookups) changes
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to Tor. The former adds some uncertainty with regards to when a domain was
added to an exit’s DNS cache. The latter can remove or reduce the attacker’s
ability to conduct attacks against specific domains but is limited in its scalability.

5.1 Fuzzy TTLs
Recall that it is possible to determine when a domain was inserted into an
exit’s DNS cache (Section 4.1) once you know the time t when the timeless
timing attack started, the duration until the domain was no longer cached x
(repeated probes), and the expected clip value clipped_ttl of the domain. The
idea of fuzzy TTLs is to add uncertainty by randomizing the length of time
that an entry is cached.

In more detail, keep Tor’s DNS cache as-is but sample the cache duration
uniformly at random from [m, clipped_ttl], wherem is the minimum duration
to cache. Upon observing the exact time of removal t + x , the attacker now
learns that the domain has been in the cache for the duration x and was thus
cached between [t + x − clipped_ttl, t −m]. Note that if m = clipped_ttl, then
x = 0; the same as in Tor today.

The reality of websites is unfortunately that they consist of multiple do-
mains, reducing the effectiveness of fuzzy TTLs because the attacker uses the
most lucky sample. For a list of domains d1, . . . , dk that were added at the same
time with identical clips, then x ← max(x1, . . . , xk). Based on our preload
list measurements presented in Section 6.2, we expect around 8–13 domains
per site available for an attacker to potentially query for. Earlier work found
a median of two unique domains out of ten domains in total per website on
Alexa top 1M [13].

Fuzzy TTLs are an ineffective mitigation if the attacker just wants to
confirm suspected activity with a low base rate, i.e., the mere existence of
cached domains anywhere in the network is enough of a signal [42]. Fuzzy
TTLs are a plus for websites that are modestly popular in the network, since
the attacker has to determine which of several exits with cached domains is
the correct one. Having to consider multiple domains and exits (to narrow
down the exact time) is more noisy in the network and increases the risk of
detection [3]. Attackers may be forced to consider a time-window of several
seconds or even minutes, which is a big win for defending against correlation
and confirmation attacks [13, 42].

5.2 Cover Lookups
The idea of the cover lookups mitigation is to simply inject domains into DNS
caches in the Tor network to create false positives. Injected domains must be
indistinguishable from domains cached from real Tor user activity. For this,
a distribution that models website visits for a particular base rate should be
used rather than running, e.g., a deterministic cron job. Further, care has to
be taken to capture all predictable domains for each website to defend.
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A more drastic mitigation would be to keep a site’s domains cached at
every exit all the time, e.g., by running exitmap [50] every five minutes. This
obviously scales poorly. The network overhead would already be significant
for a few hundred sites, e.g., estimates based on Alexa top-1k would add about
26.7 requests per second to each exit.

Cover lookups do not scale, even if just injected at few exits probabilistically
according to some target base rate. It is a last resort mitigation for site operators
that fear that their users are targeted by motivated attackers and where, for
some reason, the site cannot transition to being completely (no resources
loaded from other domains) hosted as an onion service.

6 Redesigning Tor’s DNS Cache
To address (timeless) timing attacks in Tor’s DNS cachewe considered a number
of possible smaller changes. All of them failed for different reasons, however.
Section 6.1 presents a straw-man design that is helpful to understandwhy, while
at the same time being closely related to the properties achieved by the preload
DNS cache design in Section 6.2. Section 6.5 presents an extensive evaluation
that answers questions about how feasible and performant our proposal is.

6.1 Straw-man Design
We omit all but one straw-man design that is particularly important to under-
stand the proposed redesign in Section 6.2: simply remove Tor’s DNS cache. If
there is no DNS cache to speak of in Tor, it is easy to see that there cannot
be any (timeless) timing attacks against Tor’s DNS cache (because it does not
exist). What these attacks would instead target is the exit’s DNS resolver which
also has a cache. At a first glance it may seem like an insignificant improvement
that just moves the problem elsewhere. This would be the case if every exit
used its own dedicated DNS resolver. However, an exit may share a resolver
with other exits or most importantly clients outside of the Tor network. A
prime example is the resolver of the ISP of the exit. Any inference made from
the state of shared resolvers would thus not be directly attributable to activity
on the Tor network. This would therefore make false positives a reality with
regards to if a domain was cached or not as a consequence of activity in the
Tor network.

Introducing false positives to the timeless timing attack itself is in general
challenging because an answer needs to be available at the same time regardless
of there being a cache hit or miss. False negatives may seem easier and could
make the attacker discard otherwise correct classifications, e.g., because an
attack only works half of the time. However, without false positives, attackers
are still able to reliably remove otherwise incorrect classification through
confirmation [42]. Because websites typically make use of multiple domain
names, defenses that add random delays to responses (to cause false negatives)
would need to consistently add similar delays for all relevant domains tied to
websites or other user activity the attacker is trying to infer. The semantics
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surrounding user activity is hard if not impossible to capture at the DNS level.
Therefore, all false negative defenses we could think of failed.

Now suppose that Tor has no DNS cache and exits always use a shared
resolver that may introduce false positives. A major downside is that perfor-
mance would take a significant hit due to the lack of a cache in Tor, especially
since a shared resolver is likely not running locally, but provided by the ISP
or some third-party. It is likely that both page-load latency and resolver load
would increase. Worsening performance and especially latency is the opposite
of what the Tor project is working towards [10, 33]. Next we show how to
get the good properties of not having a DNS cache in Tor (potential for false
positives) while improving performance.

6.2 The Preload DNS Cache
This is not only a defense against (timeless) timing attacks in the DNS cache,
but a complete redesign of Tor’s DNS cache. Ultimately, what we want to
achieve is false positives for an attacker trying to determine client activity in the
Tor network with the help of DNS. The only way to achieve this—upon learning
that a domain associated with some activity has been looked up—is if there
is a possibility that this domain lookup was caused from outside of the Tor
network. Therefore, as a starting point, we assume that the Tor Project would
strongly encourage exit operators to not run local resolvers dedicated to exits.
Instead, exit operators should configure their systems to use their ISP resolvers
or use a third-party provider. Greschbach et al. [13] investigated the effect of
DNS on Tor’s anonymity, including resolver configuration, and found that
using the ISP’s resolver would be preferable.

First remove all of Tor’s current DNS caching as in our straw-man design.
The preloaded DNS cache instead contains two types of caches: a same-circuit
cache and a shared preload cache, see Figure 9. The preloaded cache only
contains domains from an allowlist. This allowlist is compiled by a central
party (e.g., by the Network Health team in the Tor Project) by visiting popular
sites from several different vantage points. The allowed domains are then
delivered to exits and continuously resolved to IPs by each exit. During
domain resolution on a circuit, the client’s lookup first hits the preload cache.
If the domain is preloaded, a cache hit is guaranteed regardless of if anyone
performed a lookup before. Therefore, it is safe to share this cache across
circuits without leaking information about past exit traffic. On a cache miss,
the circuit’s same-circuit cache is consulted. As the name suggests, this cache is
shared for streams on the same circuit but not across different circuits. Due
to Tor’s circuit isolation, an attacker is unable to probe any other cache than
their own. Therefore, (timeless) timing attacks are eliminated (similar to if
Tor did not have a DNS cache at all), but without removing the possibility of
cache hits.

Including a same-circuit cache in the defense is motivated by Tor’s significant
same-circuit caching to retain performance, see Figures 4a and 4b in Section 3.3.
One can confirm that this is most likely due to Tor Browser opening several con-
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Figure 9: Overview of the preloaded DNS cache design. A central party visits
sites on a popularity list from different vantage points to compile an allowlist
of domains that each relay keeps preloaded at all times by resolving them
continuously. DNS looks-ups start in the shared preload cache and moves on
to a dynamic cache that is never shared across circuits on cache misses.

current connections by referring to the network.http.max-persistent-con
nections-per-proxy option and/or enabling debug logging,4 observing that
multiple streams are often created to the same destination. Note that these
destinations are domains and not IPs, and that neither TB nor the client-side
Tor process has any notion of a DNS cache to prevent cross-circuit fingerprint-
ing (see Section 2.2). While a hypothetical per-circuit client-side cache would
be an option, it would per definition not be able to generate cache hits for
concurrent resolves (without violating circuit isolation, potentially leading
to cross-circuit fingerprinting) and put pressure on exits unless they do the
appropriate caching. This is why our design places the same-circuit cache at
exits instead of clients.

A preload cache is also motivated by performance, however without any
of the harmful cross-circuit sharing. The remainder of this section explores
the performance impact of compiling an allowlist from popularity lists—like
Alexa [2], Cisco Umbrella [7], and Tranco [25]—by comparing the resulting
cache-hit ratios to baseline Tor today. The preloaded DNS cache is inspired
by RFC 8767 [24] which allows resolvers to serve stale data in some cases

4Enable debug logging in Tor Browser: https://gitlab.torproject.org/tpo/
applications/tor-browser/-/wikis/Hacking#debugging-the-tor-browser

https://gitlab.torproject.org/tpo/applications/tor-browser/-/wikis/Hacking#debugging-the-tor-browser
https://gitlab.torproject.org/tpo/applications/tor-browser/-/wikis/Hacking#debugging-the-tor-browser
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(see Section 7). Here, exits keep domains on a preloaded allowlist fresh on
a best-effort level, serving stale records if necessary. Upon shutdown, exits
could persist IPs in the preload cache to disk as a starting point on startup.
Upon startup, if the preload cache have yet to be populated with IPs, simply
treat lookups as cache misses. We discuss periodic refresh overhead further in
Section 6.5.3.

6.3 Data Collection
As part of understanding Tor’s DNS cache (Section 3) we also collected data
to be able to evaluate the performance of the preload design. In particular,
we evaluate different popularity lists, the impact on cache-hit ratio, estimated
DNS cache size, and how these change over time.

Central to the preload design is domain popularity lists. We included the
Alexa list [2] because that is what Mani et al. showed to be accurate for Tor [28],
the newer Tranco list because it may be more accurate [25], and the Cisco
Umbrella list because it also contains “non-web” domains [7].

In addition to considering the popularity lists, we also created extended
lists from Alexa and Tranco by visiting each domain on those lists using the
Chromium browser and recording all requests for additional domains. We
repeated this three times from Europe, twice from the US, and twice from
Hong Kong by using a popular VPN service. Each visit was given a timeout
of 20 seconds. No pruning of the resulting extended lists of domains was done.
Much can likely be done to make these lists of domains significantly more com-
prehensive (e.g., by considering popular subpages that might contain domains
not on the front-page of websites) and smaller (e.g., by pruning unique tracking
domains: in one of our biggest lists, *.safeframe.googlesyndication.com
makes up 8% of domains with unique tracking subdomains with no value for
caching). Another direction to explore that could result in lists that are smaller
and/or more comprehensive would be to tailor them specifically for relays
in certain regions. For example, website visits from Europe may be treated
differently by website operators due to regulations like the GDPR. (In other
words, there could be differences with regards to domains—not to be confused
with IPs that each relay already resolves locally—that are encountered during
website visits.)

Based on the regular and extended popularity lists, we made several lists
from top-10 up to and including top-10,000 in increments. Further, the week-
end before each of the first four weeks of data collection (see Section 3), we
downloaded fresh popularity lists (Fridays) and generated new extended lists
(Saturdays and Sundays). We generated in total 4 ∗ 20 ∗ 5 = 400 lists: for the
first four weeks, 20 lists each for {Alexa, Tranco, Umbrella, extended Alexa,
extended Tranco}.

Our data collection involving the lists took place in three phases. The first
phase consisted of the first four weeks with increasingly more lists, which
was followed by two weeks of analysis of our results and dialog with the
Tor Research Safety Board. This lead us to the third and final phase of data
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collection where we excluded the vast majority of lists, focusing only on getting
extended data for about eleven more weeks on the most informative and useful
lists (see Section 6.5).

6.4 Further Ethical Considerations
We discussed the preload additions as part of our other data collection, received
feedback from the Tor Research Safety Board, and passed our university’s
ethical review process.

Our rationale for why including counters for preload lists is safe was as
follows. We collect counters of aggregate lookups that would have been cache-
hits on each list over 15 minutes. Except for the top-10 lists (non-extended), all
other lists contain in the order of 100–1,000 unique domains aggregated into a
single counter. The main harm associated with the dataset is if they enable an
attacker to rule out that a particular website or Tor-user activity took place at
our exits (see following paragraph). So, little to no zero counters in our data is
what we set out to achieve. As an additional safety precaution our exits only
have a 0.1% exit probability, further making any zero counter less useful.

Let us look more closely at the potential harm. For websites, the results
of Mani et al. [28] tell an attacker to expect a power-law-like distribution of
website popularity in the network. As discussed in Section 3.1, we expect on
average about 725 website visits to each exit per 15 minute period. This is the
prior of an attacker wishing to perform confirmation or correlation attacks.
Most of the visits should be to popular websites (per definition) and if the
dataset allows an attacker to rule such visits out it may cause harm because
it is useful information to the attacker [42]. Because of this, we grouped our
lists into intervals of 100s (for top-?00) and 1000s (for top-?000). We stopped
at top-10k because we estimated little utility of caching domains of even less
popular websites. Further, to illustrate when the type of data we collect can
be harmful, the results of Mani et al. [28] and Pulls and Dahlberg [42] tell
us that at some point the logic becomes flipped in terms of attacker utility:
confirming that it was possible that a visit took place to a rarely visited website
is useful. The popularity (i.e., network base rate) of websites is central. We
set out to only collect data on the most popular of websites/domains, so for
us, the focus is on when the attacker can rule out website visits or some user
activity: an attacker already expects that popular websites/domains are visited.

We analyzed the 1,330,400 sample counters we collected over the first four
weeks for different popularity lists. We found 33 zero counters. All of them
belonged to Alexa top-10 lists from different weeks! Besides Alexa top-10, the
next list with the lowest counter was Tranco top-100 from 20 May with 39 hits.
Finding empty counters for Alexa top-10 was at first very surprising, because
the list contains the most popular websites on the web (e.g., from 20 May:
google.com, youtube.com, baidu.com, facebook.com, instagram.com,
bilibili.com, qq.com, wikipedia.org, amazon.com, and yahoo.com). H-
owever, note how the actual domains on the list (of websites) do not contain
the www prefix nor any other popular subdomain associated with the sites.
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This highlights how poor the regular non-extended lists are at capturing actual
website traffic. We can further see this for both Alexa and Tranco in Figure 10,
presented next in Section 6.5.1. Even the top-10k lists have low cache-hit ratios.

By comparing a list with a more popular list (which should be a strict
subset) and observing the same counter value it is also possible to infer that
likely no visits took place to the unique domains on the less popular list. (This
could happen by chance though.) We found 16,055 (1.2%) such samples: 5,073
to top-10k lists, 3,703 to top-[1k,10k) lists, and 7,279 to top-[200,1k) lists.
None of them were to top-100 lists. This might seem alarming at first glance,
but taking a closer look at the lists we find that only 135 of the samples were to
extended lists (77 to x-Tranco top-10k, the highest rank list was x-Tranco top-
600 with one sample). Further, only five of the samples belonged to a list from
Umbrella. The remaining 15,915 samples were to the regular (non-extended)
Alexa and Tranco lists. This is of limited use to attackers for popular domains,
because while the lists capture popular websites, our dataset contains counters
of aggregate domain lookups. An inferred zero counter does not mean that no
visits took place to websites for the non-extended lists. For example, if you
enter www.google.com or www.wikipedia.org into Tor Browser, neither
google.com nor wikipedia.org are actually connected to. The recursive
resolver of the exit may perform the lookup, but Tor will not, so it is not
captured in our dataset for the non-extended lists. The extended lists, due to
being generated from actual website visits, include domains typically connected
to by Tor Browser. Another example is users visiting direct links to websites
and not entering the domain manually in the browser, such as when following
links from search engines or sent through social media.

When designing our measurements the above detail was not considered.
We included the regular popularity lists for sake of comparison. Ideally the
non-extended lists would have been effective sources for preload lists. This was
evidently not the case for Alexa and Tranco (see later results), but was the case
for Umbrella. So while what we did learn helped us understand the value of
using extended lists to improve cache hits, in hindsight we could have come to
the same conclusion without the same granularity for non-extended lists.

In the second phase of our data collection (see Section 6.3), we discussed
the above detail with the Tor Research Safety Board and concluded to stop
collecting data for (non-extended) Alexa and Tranco, and to minimize the
lists for future collection to those necessary to determine the longevity of
potentially useful preload lists (based on our findings). Out of an abundance
of caution, we will only share the collected counters for non-extended Alexa
and Tranco lists with researchers for research purposes (the rest of the data is
public). The counters collected during the second phase were consistent with
the data from the first phase.

During the third phase of data collection, we limited the collection to
extended Tranco top-{10, 100, 1k, 2k, 4k, 5k, 7k, 10k} lists and the Umbrella
top-10k list, all from April 29. The goal was to learn how cache hits get worse
over time with old lists. Out of 141,624 sample counters collected, three were
zero and 59 were relatively zero when compared to the more popular list.
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6.5 Performance Evaluation
The goal of our evaluation is to determine over time: cache-hit ratio of potential
preload lists (Section 6.5.1), memory usage at exits (Section 6.5.2), and resolver
load (Section 6.5.3).

6.5.1 Results: Preload Lists

Our dataset is extensive with 2,498,424 sample counters from 400 popularity
lists spanning about four months. Figure 10 shows comprehensive heatmaps
of shared cross-circuit cache-hit ratios for the web (Figure 10a) and permissive
(Figure 10b) exits over the first six weeks of data collection (first and second
phases). Cache-hit ratios are medians (very similar to the mean) for 24h
periods. In each figure, the groupings of the four weeks when we added new
lists are visible (top to bottom), as well as baseline Tor at the bottom row for
sake of comparison. Note how the regular Alexa and Tranco top-10k lists
perform poorly: the two black (< 5% cache-hit ratio) lines at the top of each
grouping. Even Umbrella 1k is better, with Umbrella 10k being comparable
to baseline Tor. The extended lists clearly improve over baseline Tor, with
the extended 10k-lists even reaching over 30% cross-circuit cache-hit ratios
some days. Look at how the lists change over time: we see no real difference
between lists generated at end of April and those generated during May, but
consistent changes across all lists over time, likely due to varying traffic at the
exits. The differences between using Alexa or Tranco to generate extended lists
are negligible, so we focus on Tranco for the remainder of this analysis as it is
open, maintained, and a more recent source of website popularity [25].

Figure 11 shows the observed cross-circuit cache-hit ratios for eight different
extended Tranco lists, Umbrella top-10k, and Tor baseline. We used lists from
the end of April because they have the most data. As a baseline, Tor’s current
DNS cache has a mean cache-hit ratio of 11% for web and 17% for permissive.
In terms of different popularity lists, the regular (non-extended) Tranco and
Alexa lists are ineffective: the top-10k lists are regularly below 5% for web and
permissive (see Figure 10). Umbrella top-10k does much better with mean 17%
(web) and 16% (permissive). This is slightly worse (permissive) and comparable
(web) to baseline Tor.

The extended lists show a further improvement, comparable in terms of
average (full duration of lists) cross-circuit cache-hit ratios to baseline Tor at
top-200 for Alexa and Tranco for web and at top-700 for permissive. The
extended lists from top-1k get (depending on which of the compiled extended
Tranco lists) 20–24% (web) and 15–18% (permissive) and up to 27–32% (web)
and 22–27% (permissive) at 10k. There is very little gain between top-7k and
top-10k. In general, the extended lists do relatively worse on the permissive
exit and the Tor baseline is higher: this makes sense, since Alexa and Tranco
are focused on websites. This is further confirmed by Umbrella doing better
as a more general-purpose domain popularity list.

Note that Figure 11 shows the cross-circuit cache-hit ratios for a selection
of the very first preload lists we created on the April 29. The results are very
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Figure 10: Shared cross-circuit cache-hit ratios (%) for selected preload lists
during the first six weeks (x-axis) of data collection. The plotted values are me-
dians over 24h, and dates on the y-axis show the date of original list download.



192 Paper VI

May 1 June 1 July 1 Aug 1 Sep 1
0.0

0.2

0.4

ca
ch

e 
hi

t r
at

io

x-Tranco 10k
x-Tranco 7k
x-Tranco 5k
x-Tranco 4k
x-Tranco 2k
x-Tranco 1k
Umbrella 10k
baseline Tor
x-Tranco 100
x-Tranco 10

(a) web

May 1 June 1 July 1 Aug 1 Sep 1
0.0

0.1

0.2

0.3

0.4

ca
ch

e 
hi

t r
at

io

x-Tranco 10k
x-Tranco 7k
x-Tranco 5k
x-Tranco 4k
x-Tranco 2k
x-Tranco 1k
Umbrella 10k
baseline Tor
x-Tranco 100
x-Tranco 10

(b) permissive

Figure 11: Shared cross-circuit cache-hit ratios for eight different extended
Tranco lists, Umbrella top-10k, and Tor baseline during four months in 2022.

encouraging: time seems to have only a slight detrimental impact on cache
hits. After four months the larger extended lists show a noticable performance
improvement over baseline, with the exception of an odd spike in baseline in
early September (we speculate that this is DDoS-related). The robustness of
preload lists removes one of the main downsides of the preload design, i.e.,
to maintain and deliver a current list to exits. It is likely feasible to ship hard-
coded preload lists as part of regular Tor releases and still improve performance,
assuming that exit operators upgrade their software a couple of times per year.

6.5.2 Results: Cache Entries

Figure 12 shows the number of cache entries needed in Tor as-is (“baseline
Tor”) and for the preload design for a range of different popularity lists. We
can accurately estimate an upper bound because we collected the total number
of entires in all same-circuit caches as part of our measurements. This count
is an upper bound, because some of those entries would have already been
cached in the preload cache. The popularity lists have static sizes, and to be an
accurate upper bound we used the largest observed size for each list over the
four weeks.

Starting with the same-circuit cache, look at the line for extended Tranco
top-10 (“x-Tranco 10”) in Figure 12: this extended list contains only 90 entries,
so the lines at the bottom show mostly the number of entries used by the same
circuit cache. The size of the same-circuit caches should be proportional to the
number of open circuits, and therefore follow exit probability. Based on the
data from Figure 12, we do not suspect this to be a significant burden. It would
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Figure 12: Estimated cache entries for eight different extended Tranco lists,
Umbrella top-10k, and Tor baseline.

be trivial to cap the size and/or prune the size as part of OOM-management,
or dropping entries based on their age would probably have little impact on
performance (presumably most value is at the start of the circuit when most
streams are attached).

Recall from Section 3.3 and Figures 3a and 3b that the permissive exit had
a mean of 12,130 entries compared to the web exit’s 7,672 mean. We see the
same figures for the baseline in Figure 12. Albeit slightly higher on average for
the web exit but more stable, we see that Umbrella 10k as well as extended
Tranco top-1k are about the same as Tor baseline. So with about the same
memory usage as now the preload design would offer slightly (permissive)
or noticeably (web) better cache-hit ratios. Looking at the top-2k up until
top-10k extended lists we see a significant higher memory usage (only slightly
sublinear) but that comes with significantly higher cache-hit ratios, as seen
in Figure 11. In absolute terms, for extended Tranco top-10k, about 60,000
cache entries—even if pessimistically assuming 1 KiB per entry—would end up
using about 60 MiB of memory for the cache. Since domains can be at most
255 bytes and most domains are much shorter, one could clearly implement
the cache more memory-efficiently. Also, as mentioned earlier, it is likely
possible to reduce the size of the extended top-10k lists by removing useless
tracking domains. Further note that the memory needed to cache the preload
list—unlike the same-circuit cache—only depends on the size of the list, not
the number circuits or streams created at the exit.



194 Paper VI

6.5.3 Results: Resolver Load

In general, on the one hand, improving cache-hit ratios will reduce resolver
load and scale well with increased traffic. On the other hand, continuously
refreshing domains on the preload list increases resolver load. Consider the
mean number of lookups at the web exit, 17,529, and its mean/median cache-
hit ratio of 0.80 (see Section 3). This implies an expected 3.9← 17529(1−0.80)

15·60
requests per second to the exit’s resolver. For the permissive exit we observed
about 7.8 requests per second. As a source of comparison, Sonntag [45, 46]
reports for a DNS resolver dedicated to a 200 Mbit/s exit in 2018 an average of
18.5 requests per second.

The resolver load for the different preload lists should be proportional
to the estimated number of cache entries shown in Figure 12. The estimated
load for an extended top-1k list would be similar to current Tor, while the
extended top-10k list would see about a seven-fold increase without changes.
This may or may not be problem. Given the variability of lookups we observed
throughout our data collection (Figure 2) and reported by Sonntag, resolvers
are clearly capable of dealing with increased loads. Requests due to the preload
list should be predictable, consistent, and cheap in terms of bandwidth even
for a low-capacity exit.

Regardless, the load on resolvers could be lowered by reducing the number
of domains, e.g., the increased cache-hit ratio from top-7k to top-10k is very
small (≈1%) for a 20–30% increase in entries. One could also increase the
internal TTLs, i.e., the frequency of refreshing the entries in the preload cache.
In Tor, this is especially practical since circuits use random exits. In the rare
case of stale data causing issues, simply create a fresh circuit. Serving stale data
is not uncommon in DNS [24], further discussed next in Section 7.

7 Related Work
Van Goethem et al. [48] originally proposed timeless timing attacks, showing
significant improvements against HTTP/2 web servers, Tor onion services, and
EAP-pwd. All timeless timing attacks exploit concurrent processing, e.g., in
HTTP/2, by filling buffers at the relay closest to an onion service, or packing
two authentication requests in EAP-pwd into the same RadSec (TLS over TCP)
packet. The latter was the inspiration for our timeless timing attack on Tor’s
DNS cache, i.e., packing two RESOLVE cells into a single TLS record.

There has been a long body of work on how to safely perform measure-
ments of the Tor network [11, 12, 18, 27], laying the foundation for safely
performing large-scale measurements [19, 28]. Our timeless timing attack en-
ables anyone to do network-wide measurements for exact domains on specific
exits with a precision of at least one second. This is highly invasive and a useful
resource to deanonymize Tor-users, discussed further shortly. Our network
measurements to inform the design of defenses have been focused around the
DNS in Tor. Similar to other related work (see below), we focused on how
to make those limited measurements safe; not on how to broadly perform a
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much wider range of measurements safely.
Greschbach et al. [13] investigated the effect of DNS on Tor’s anonymity.

They quantified the use of DNS resolvers in the network, the impact of choice
of resolver on correlation and confirmation attacks, and how to incorporate
observed DNS traffic with website fingerprinting attacks [5, 16, 17, 26, 32, 47]
to make improved correlation attacks. In their construction, DNS traffic is
used to either reduce the number of websites to consider during classification or
to confirm classification. A key observation was that Tor, due to a bug, clipped
all TTLs to 60 seconds. This was resolved and lead to the current approach of
clipping to 300 or 3,600 seconds. One of our short-time mitigations update
these clips to be fuzzy.

Greschbach et al. [13] also measured DNS requests from an exit for both
web and a more permissive exit policy in 2016. The collection was done by
observing DNS requests to the exit’s resolver and aggregating results into five-
minute buckets. Similarly, we aggregate over time in 15-minute buckets and do
not directly collect resolved domains. They found a small difference between
exit policies, with the permissive exit having slightly fewer (3% smaller median)
lookups. Our results are very different: the permissive exit policy resulted in
significantly more (double the median) lookups.

Pulls and Dahlberg [42] generalized the classifier confirmation attack of
Greschbach et al. [13] into a new security notion for website fingerprinting
attacks, and further explored the use of DNS. They showed that timing attacks
were possible in Tor’s DNS cache, performing network-wide measurements on
a domain under their control with a true positive rate of 17.3%when attempting
to minimize false positives. We use a similar method for measurements, but
our attack is significantly better with a 100% true positive rate and no false
positives at all.

Sonntag collected hourly data from the resolver of an exit during five
months in 2018 [45, 46]. In terms of frequency, they noted about 18.5 requests
per second, with a peak of 291,472 requests in an hour. The average is higher
than ours (3.9 and 7.8 requests per second) while the peak significantly smaller
(1,183,275 requests in 15 minutes). Sonntag also analyzed the actual domains
looked up, including categorization (porn, social network, shopping, adver-
tisement etc). We do not collect domains; only cache-hits as part of popularity
lists by aggregating domains into buckets like top-100, top-1k, etc.

Mani et al. [28] used PrivCount [18] and PSC [12] to safely make extensive
network-wide measurements of the Tor network. They measured, e.g., circuits,
streams, destination ports, and exit domains at exits, as well as client con-
nections, churn, composition, and diversity at clients. Their exit probability
ranged between 1.5–2.2%, compared to our peak of 0.1%. While our data
is much more limited and targeted around DNS, there are two interesting
comparisons to consider:

• Mani et al. observed 2.1 billion exit streams inferred in the network every
24 hours. Extrapolating on our lookup statistics we have an average of
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Figure 13: Comparison of relative popularity of popularity rankings with the
results of Mani et al. [28].

6.3 billion lookups, which corresponds to the number of streams.5 This
suggests a significant increase (≈ 3x ) in the number of streams in the
Tor network since 2018.

• Mani et al. measured the frequency of how well the primary domain
on a circuit matched the Alexa top-one-million list. We transform their
reported relative counts and compare it to the relative count of aver-
age lookups in the same intervals in our dataset for top-10k, shown in
Figure 13. Note that this only uses data from phase one of our data
collection. Broadly, we see that their results show significantly more
traffic to top-10 than any of the lists we use. That said, our data supports
one of Mani et al.’s conclusion that the popularity lists are reasonably
accurate representations of traffic from the Tor network.

The relatively recent RFC 8767 [24] allows for DNS data to be served
“stale”, i.e., after expiry according to its TTL, in the exceptional circumstance
that a recursive resolver is unable to refresh the information. In case data
goes stale, RFC 8767 suggests serving it for at most one to three days. The
background of RFC 8767 aptly motivates this with the saying that “stale
bread is better than no bread”. In addition to serving potentially stale data,
modern resolvers like Unbound [31] further support prefetching: preemptively
refreshing domains in the cache before TTL expiry. These measures all serve to

5Streams either do a lookup with RELAY_BEGIN or are closed after a RELAY_RESOLVE
cell. Timeout and retries are possible on resolver failure, but the way we measure hides those extra
lookups.
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improved reliability and have been found to be used for sake of resiliency [29].
Tor already clips TTLs, in a sense serving stale data for the vast majority of
domains. Our preload design takes this further by introducing continuous
prefetching of domains on a fixed allowlist.

Two decades ago, Jung et al. [22] found that cache-hit ratios on the order of
80–87% are achieved if a resolver has ten or more clients and TTLs are at least
ten minutes. More recently Hao and Wang [15] reported that 100k cached
entries are required to achieve a baseline of 86% cache-hits for a first-come first-
serve cache in a university network. Their dataset had similar characteristics
to a DNS trace collected for an ISP resolver by Chen et al. [4] with regards to
disposable domains that are never requested more than once in the long-tail of
DNS; out of the 11% of domains that are not disposable, 5% and 30% of them
have cache-hit ratios of at least 95% and 80% respectively. It appears that fewer
disposable domains are resolved in Tor because the observed cache sizes are
not large enough for 89% unique lookups. Achieving an 80% cache-hit ratio
with a cache of 10k entries does not seem to be an outlier.

8 Conclusion
Our timeless timing attack on Tor’s DNS cache is virtually perfect, significantly
improving over earlier timing attacks [42]. Based on 12 million measurements
in the live Tor network, we only observed a 0.00025 failure rate due to vanished
circuits and other transient networking errors that are easy to account for. We
responsibly disclosed the attack to the Tor Project and coordinated the process
around defenses with them.

Our proposed mitigations are just that—mitigations—and do not com-
pletely address the underlying issues. The fuzzy TTLs mitigation primarily
addresses confirmation with WF attacks involving moderately popular do-
mains. Cover lookups, while valuable if done, does not scale and requires
continuous efforts that are not easily automated on a large scale.

Setting out to find long-term solutions, we landed in redesigning Tor’s
DNS cache completely with a preload design. To inform the design and to
evaluate its feasibility, we ran a four-month experiment starting in May 2022
measuring key performance metrics. To ensure that our measurements were
safe, we repeatedly consulted the Tor Research Safety Board and completed
our university ethical review process. We received positive feedback as well as
invaluable suggestions along the way to minimize any potential harm to the
Tor network and its users.

First, the preload design is immune to timing and timeless attacks due to
never sharing any data in the DNS cache injected due to user activity across
circuits. Secondly, the preload lists of domains based on extended Alexa,
extended Tranco, and Cisco Umbrella all show impressive cache-hit ratios.
Depending on list, it is possible to get comparable cache-hit ratios, memory
usage, and resolver load as Tor today. More extensive lists can trade modest
increases in memory and resolver load with significantly higher cache-hit
ratios, especially for web traffic. Important future work is improving how the
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extended lists are generated—e.g., by tailoring them specifically for relays in
certain regions (location sensitivity), excluding unique tracking domains, or
crawling websites to discover subdomains—which is likely to lead to higher
cache-hit ratios and smaller lists.

One of the biggest downsides of the preload design is that the most effective
preload lists are extended lists based on Alexa or Tranco, requiring continuous
efforts to update. Fortunately, our measurements show that even four-month-
old extended lists remain effective with significant improvement over baseline
Tor. It is likely feasible for the Tor Project to generate and ship hard-coded
preload lists as part of regular Tor releases and still improve performance
compared to today.

Like Mani et al. [28], we see that traffic in the Tor network appears to
reasonably match website/domain popularity lists like Alexa, Tranco, and Um-
brella. This is fundamental for the preload design, and likely also a contributing
factor for the observed long stability of the extended preload lists, since the
most popular sites see relatively little churn [36]. Finally, our measurements
indicate that the Tor network has grown by about 300% in terms of number of
streams since 2018, and that the large majority of Tor’s current DNS caching
is a privacy harm rather than a cross-circuit performance boost.
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Availability
We make the following three artifacts available:

1. Patches to Tor, associated scripts and data, and documentation for per-
forming timeless timing attacks.

2. The measurement data from our two exits, a detailed timeline of opera-
tions, scripts for creating extended preload lists, and associated Python
scripts for parsing all stats and generating figures. Sharing of the dataset
was discussed as part of the contact with the Tor Research Safety Board
and our university ethical review process. Relevant parts of our research
safety board contact are included in our artifact.
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3. Contributions to the Tor Project, including source code and associated
tooling for our Fuzzy TTLs mitigation and preload defense.

See https://gitlab.torproject.org/rgdd/ttapd to locate the above.
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